IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000724.html
   My bibliography  Save this article

Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation

Author

Listed:
  • Peter W Gething
  • Anand P Patil
  • Simon I Hay

Abstract

Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty—the fidelity of predictions at each mapped pixel—but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.Author Summary: Reliable disease maps can support rational decision making. These maps are often made by interpolation: taking disease data from field studies and predicting values for the gaps between the data to make a complete map. Such maps always contain uncertainty, however, and measuring this uncertainty is vital so that the reliability of risk maps can be determined. A modern approach called model-based geostatistics (MBG) has led to increasingly sophisticated ways of mapping disease and measuring spatial uncertainty. Many health management decisions are made for administrative areas (e.g., districts, provinces, countries) and disease maps can support these decisions by averaging their values over the regions of interest. Carrying out this aggregation in conjunction with MBG techniques has not previously been possible for very large maps, however, due largely to the computational constraints involved. This study has addressed this problem by developing a new algorithm and allows aggregation of a global MBG disease map over very large areas. It is used to estimate Plasmodium falciparum malaria prevalence and corresponding populations at risk worldwide, aggregated across regions of different sizes. These estimates are a cornerstone for disease burden estimation and are provided in full to facilitate that process.

Suggested Citation

  • Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
  • Handle: RePEc:plo:pcbi00:1000724
    DOI: 10.1371/journal.pcbi.1000724
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000724
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000724&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gosoniu, L. & Vounatsou, P. & Sogoba, N. & Maire, N. & Smith, T., 2009. "Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3358-3371, July.
    2. Peter Diggle & Rana Moyeed & Barry Rowlingson & Madeleine Thomson, 2002. "Childhood malaria in the Gambia: a case‐study in model‐based geostatistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 493-506, October.
    3. D. L. Smith & J. Dushoff & R. W. Snow & S. I. Hay, 2005. "The entomological inoculation rate and Plasmodium falciparum infection in African children," Nature, Nature, vol. 438(7067), pages 492-495, November.
    4. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    5. Simon I Hay & Carlos A Guerra & Peter W Gething & Anand P Patil & Andrew J Tatem & Abdisalan M Noor & Caroline W Kabaria & Bui H Manh & Iqbal R F Elyazar & Simon Brooker & David L Smith & Rana A Moyee, 2009. "A World Malaria Map: Plasmodium falciparum Endemicity in 2007," PLOS Medicine, Public Library of Science, vol. 6(3), pages 1-17, March.
    6. Cressie, Noel & Verzelen, Nicolas, 2008. "Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2794-2807, January.
    7. Robert W. Snow & Carlos A. Guerra & Abdisalan M. Noor & Hla Y. Myint & Simon I. Hay, 2005. "The global distribution of clinical episodes of Plasmodium falciparum malaria," Nature, Nature, vol. 434(7030), pages 214-217, March.
    8. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    9. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    10. Robert W Snow & Carlos A Guerra & Juliette J Mutheu & Simon I Hay, 2008. "International Funding for Malaria Control in Relation to Populations at Risk of Stable Plasmodium falciparum Transmission," PLOS Medicine, Public Library of Science, vol. 5(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. M. Niaz Arifin & Rumana Reaz Arifin & Dilkushi De Alwis Pitts & M. Sohel Rahman & Sara Nowreen & Gregory R. Madey & Frank H. Collins, 2015. "Landscape Epidemiology Modeling Using an Agent-Based Model and a Geographic Information System," Land, MDPI, vol. 4(2), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verzelen, Nicolas, 2010. "Data-driven neighborhood selection of a Gaussian field," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1355-1371, May.
    2. Corentin M Barbu & Andrew Hong & Jennifer M Manne & Dylan S Small & Javier E Quintanilla Calderón & Karthik Sethuraman & Víctor Quispe-Machaca & Jenny Ancca-Juárez & Juan G Cornejo del Carpio & Fernan, 2013. "The Effects of City Streets on an Urban Disease Vector," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-9, January.
    3. Peter J. Diggle & Emanuele Giorgi, 2016. "Model-Based Geostatistics for Prevalence Mapping in Low-Resource Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1096-1120, July.
    4. Edmund I. Yamba & Adrian M. Tompkins & Andreas H. Fink & Volker Ermert & Mbouna D. Amelie & Leonard K. Amekudzi & Olivier J. T. Briët, 2020. "Monthly Entomological Inoculation Rate Data for Studying the Seasonality of Malaria Transmission in Africa," Data, MDPI, vol. 5(2), pages 1-17, March.
    5. Florence Burté & Biobele J Brown & Adebola E Orimadegun & Wasiu A Ajetunmobi & Francesca Battaglia & Barry K Ely & Nathaniel K Afolabi & Dimitrios Athanasakis & Francis Akinkunmi & Olayinka Kowobari &, 2012. "Severe Childhood Malaria Syndromes Defined by Plasma Proteome Profiles," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    6. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    7. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    8. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    9. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    10. John D O’Brien & Zamin Iqbal & Jason Wendler & Lucas Amenga-Etego, 2016. "Inferring Strain Mixture within Clinical Plasmodium falciparum Isolates from Genomic Sequence Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-20, June.
    11. Volker Ermert & Andreas Fink & Heiko Paeth, 2013. "The potential effects of climate change on malaria transmission in Africa using bias-corrected regionalised climate projections and a simple malaria seasonality model," Climatic Change, Springer, vol. 120(4), pages 741-754, October.
    12. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    13. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    14. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    15. Anderson, Soren T. & Laxminarayan, Ramanan & Salant, Stephen W., 2012. "Diversify or focus? Spending to combat infectious diseases when budgets are tight," Journal of Health Economics, Elsevier, vol. 31(4), pages 658-675.
    16. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    17. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    18. repec:hrv:hksfac:5341873 is not listed on IDEAS
    19. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    20. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    21. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.