IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002801.html
   My bibliography  Save this article

The Effects of City Streets on an Urban Disease Vector

Author

Listed:
  • Corentin M Barbu
  • Andrew Hong
  • Jennifer M Manne
  • Dylan S Small
  • Javier E Quintanilla Calderón
  • Karthik Sethuraman
  • Víctor Quispe-Machaca
  • Jenny Ancca-Juárez
  • Juan G Cornejo del Carpio
  • Fernando S Málaga Chavez
  • César Náquira
  • Michael Z Levy

Abstract

With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p

Suggested Citation

  • Corentin M Barbu & Andrew Hong & Jennifer M Manne & Dylan S Small & Javier E Quintanilla Calderón & Karthik Sethuraman & Víctor Quispe-Machaca & Jenny Ancca-Juárez & Juan G Cornejo del Carpio & Fernan, 2013. "The Effects of City Streets on an Urban Disease Vector," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-9, January.
  • Handle: RePEc:plo:pcbi00:1002801
    DOI: 10.1371/journal.pcbi.1002801
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002801
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002801&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gosoniu, L. & Vounatsou, P. & Sogoba, N. & Maire, N. & Smith, T., 2009. "Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3358-3371, July.
    2. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Corentin Barbu & Eric Dumonteil & Sébastien Gourbière, 2010. "Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 4(8), pages 1-11, August.
    5. Furrer, Reinhard & Sain, Stephan R., 2010. "spam: A Sparse Matrix R Package with Emphasis on MCMC Methods for Gaussian Markov Random Fields," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i10).
    6. Simon I Hay & Carlos A Guerra & Peter W Gething & Anand P Patil & Andrew J Tatem & Abdisalan M Noor & Caroline W Kabaria & Bui H Manh & Iqbal R F Elyazar & Simon Brooker & David L Smith & Rana A Moyee, 2009. "A World Malaria Map: Plasmodium falciparum Endemicity in 2007," PLOS Medicine, Public Library of Science, vol. 6(3), pages 1-17, March.
    7. Daniel P. Kennedy & Ralph Adolphs, 2011. "Stress and the city," Nature, Nature, vol. 474(7352), pages 452-453, June.
    8. Heinrich zu Dohna & María C Cecere & Ricardo E Gürtler & Uriel Kitron & Joel E Cohen, 2009. "Spatial Re-Establishment Dynamics of Local Populations of Vectors of Chagas Disease," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 3(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.
    2. White, Gentry & Ghosh, Sujit K., 2009. "A stochastic neighborhood conditional autoregressive model for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3033-3046, June.
    3. Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
    4. Margaret R Donald & Kerrie L Mengersen & Rick R Young, 2015. "A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    7. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    8. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    9. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    10. Roman Flury & Reinhard Furrer, 2021. "Discussion on Competition for Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 599-603, December.
    11. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    12. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    13. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    14. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    15. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    16. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    17. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    18. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    19. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    20. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.