IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v66y2004i4p877-892.html
   My bibliography  Save this article

Approximating hidden Gaussian Markov random fields

Author

Listed:
  • Håvard Rue
  • Ingelin Steinsland
  • Sveinung Erland

Abstract

Summary. Gaussian Markov random‐field (GMRF) models are frequently used in a wide variety of applications. In most cases parts of the GMRF are observed through mutually independent data; hence the full conditional of the GMRF, a hidden GMRF (HGMRF), is of interest. We are concerned with the case where the likelihood is non‐Gaussian, leading to non‐Gaussian HGMRF models. Several researchers have constructed block sampling Markov chain Monte Carlo schemes based on approximations of the HGMRF by a GMRF, using a second‐order expansion of the log‐density at or near the mode. This is possible as the GMRF approximation can be sampled exactly with a known normalizing constant. The Markov property of the GMRF approximation yields computational efficiency.The main contribution in the paper is to go beyond the GMRF approximation and to construct a class of non‐Gaussian approximations which adapt automatically to the particular HGMRF that is under study. The accuracy can be tuned by intuitive parameters to nearly any precision. These non‐Gaussian approximations share the same computational complexity as those which are based on GMRFs and can be sampled exactly with computable normalizing constants. We apply our approximations in spatial disease mapping and model‐based geostatistical models with different likelihoods, obtain procedures for block updating and construct Metropolized independence samplers.

Suggested Citation

  • Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
  • Handle: RePEc:bla:jorssb:v:66:y:2004:i:4:p:877-892
    DOI: 10.1111/j.1467-9868.2004.B5590.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2004.B5590.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2004.B5590.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    3. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    6. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    7. Leonhard Knorr-Held & Günter Raßer, 2000. "Bayesian Detection of Clusters and Discontinuities in Disease Maps," Biometrics, The International Biometric Society, vol. 56(1), pages 13-21, March.
    8. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    9. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    10. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    11. Brian S. Caffo, 2002. "Empirical supremum rejection sampling," Biometrika, Biometrika Trust, vol. 89(4), pages 745-754, December.
    12. Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
    13. Carmen Fernández & Peter J. Green, 2002. "Modelling spatially correlated data via mixtures: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 805-826, October.
    14. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    15. Leonhard Knorr‐Held & Håvard Rue, 2002. "On Block Updating in Markov Random Field Models for Disease Mapping," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 597-614, December.
    16. Ole F. Christensen & Rasmus Waagepetersen, 2002. "Bayesian Prediction of Spatial Count Data Using Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 58(2), pages 280-286, June.
    17. J. Besag & D. Higdon, 1999. "Bayesian analysis of agricultural field experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 691-746.
    18. Leonhard Knorr‐Held, 1999. "Conditional Prior Proposals in Dynamic Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 129-144, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McCAUSLAND, William, 2008. "The Hessian Method (Highly Efficient State Smoothing, In a Nutshell)," Cahiers de recherche 03-2008, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    3. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
    4. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    5. Li, Yong & Yu, Jun & Zeng, Tao, 2020. "Deviance information criterion for latent variable models and misspecified models," Journal of Econometrics, Elsevier, vol. 216(2), pages 450-493.
    6. Nial Friel & Håvard Rue, 2007. "Recursive computing and simulation-free inference for general factorizable models," Biometrika, Biometrika Trust, vol. 94(3), pages 661-672.
    7. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    8. Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
    9. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Schmidt, Paul & Mühlau, Mark & Schmid, Volker, 2017. "Fitting large-scale structured additive regression models using Krylov subspace methods," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 59-75.
    4. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    5. Gamerman, Dani & Moreira, Ajax R. B. & Rue, Havard, 2003. "Space-varying regression models: specifications and simulation," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 513-533, March.
    6. Stefan Lang & Samson B. Adebayo & Ludwig Fahrmeir & Winfried J. Steiner, 2003. "Bayesian Geoadditive Seemingly Unrelated Regression," Computational Statistics, Springer, vol. 18(2), pages 263-292, July.
    7. Leonhard Knorr-Held & Günter Raßer & Nikolaus Becker, 2002. "Disease Mapping of Stage-Specific Cancer Incidence Data," Biometrics, The International Biometric Society, vol. 58(3), pages 492-501, September.
    8. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    9. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    10. Riccardo Borgoni & Francesco Billari, 2003. "Bayesian spatial analysis of demographic survey data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(3), pages 61-92.
    11. Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
    12. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    13. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    14. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    15. Riccardo Borgoni & Francesco C. Billari, 2002. "Bayesian spatial analysis of demographic survey data: an application to contraceptive use at first sexual intercourse," MPIDR Working Papers WP-2002-048, Max Planck Institute for Demographic Research, Rostock, Germany.
    16. Stefan Lang & Eva-Maria Pronk & Ludwig Fahrmeir, 2002. "Function estimation with locally adaptive dynamic models," Computational Statistics, Springer, vol. 17(4), pages 479-499, December.
    17. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    18. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    19. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    20. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:4:p:877-892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.