IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v43y1992i2p351-374.html
   My bibliography  Save this article

Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging

Author

Listed:
  • Le, Nhu D.
  • Zidek, James V.

Abstract

In this paper a Bayesian alternative to Kriging is developed. The latter is an important tool in geostatistics. But aspects of environmetrics make it less suitable as a tool for interpolating spatial random fields which are observed successively over time. The theory presented here permits temporal (and spatial) modeling to be done in a convenient and flexible way. At the same time model misspecifications, if any, can be corrected by additional data if and when it becomes available, and past data may be used in a systematic way to fit model parameters. Finally, uncertainty about model parameters is represented in the (posterior) distributions, so unrealistically small credible regions for the interpolants are avoided. The theory is based on the multivariate normal and related distributions, but because of the hierarchical prior models adopted, the results would seem somewhat robust with respect to the choice of these distributions and associated hyperparameters.

Suggested Citation

  • Le, Nhu D. & Zidek, James V., 1992. "Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 351-374, November.
  • Handle: RePEc:eee:jmvana:v:43:y:1992:i:2:p:351-374
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(92)90040-M
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    2. Sujit K. Sahu & Alan E. Gelfand & David M. Holland, 2010. "Fusing point and areal level space–time data with application to wet deposition," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 77-103, January.
    3. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    4. Idris A. Eckley & Guy P. Nason & Robert L. Treloar, 2010. "Locally stationary wavelet fields with application to the modelling and analysis of image texture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 595-616, August.
    5. Sun, Xiaoqian & He, Zhuoqiong & Kabrick, John, 2008. "Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3749-3764, March.
    6. Peter Diggle & Soren Lophaven, 2004. "Bayesian Geostatistical Design," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1042, Berkeley Electronic Press.
    7. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
    8. Hongxing Li & Charlotte D. Smith & Li Wang & Zheng Li & Chuanlong Xiong & Rong Zhang, 2019. "Combining Spatial Analysis and a Drinking Water Quality Index to Evaluate Monitoring Data," IJERPH, MDPI, vol. 16(3), pages 1-9, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:43:y:1992:i:2:p:351-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.