Fast kriging of large data sets with Gaussian Markov random fields
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64, March.
- Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
- Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
- Sara Sjöstedt‐de Luna & Alastair Young, 2003. "The Bootstrap and Kriging Prediction Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 175-192, March.
- E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mühlenstädt, Thomas & Kuhnt, Sonja, 2011. "Kernel interpolation," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2962-2974, November.
- Axel Schaffer & Jan Rauland, 2011. "Regional efficiency in generating technological knowledge," ERSA conference papers ersa10p1108, European Regional Science Association.
- Jason S. Byers & Jeff Gill, 2022. "Applied Geospatial Bayesian Modeling in the Big Data Era: Challenges and Solutions," Mathematics, MDPI, vol. 10(21), pages 1-23, November.
- Montero, José-María & Fernández-Avilés, Gema, 2015. "Functional Kriging Prediction of Pollution Series: The Geostatistical Alternative for Spatially-fixed Data/Predicción de series de contaminación mediante kriging funcional. La alternativa geoestadísti," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 145-179, Enero.
- Cavoretto, R. & De Rossi, A. & Perracchione, E., 2023. "Learning with Partition of Unity-based Kriging Estimators," Applied Mathematics and Computation, Elsevier, vol. 448(C).
- Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
- Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
- Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
- Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
- Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
- Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
- Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
- Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
- Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- repec:jss:jstsof:21:i08 is not listed on IDEAS
- McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
- Liu, Wei-han, 2016. "A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility," Energy Economics, Elsevier, vol. 56(C), pages 351-362.
- Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
- Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016.
"Analysing farmland rental rates using Bayesian geoadditive quantile regression,"
European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
- März, Alexander & Klein, Nadja & Kneib, Thomas & Musshoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182752, European Association of Agricultural Economists.
- März, Alexander & Klein, Nadja & Kneib, Thomas & Mußhoff, Oliver, 2014. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," DARE Discussion Papers 1403, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
- Andrew Finley & Sudipto Banerjee & Alan Gelfand, 2012. "Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes," Journal of Geographical Systems, Springer, vol. 14(1), pages 29-47, January.
- White, Gentry & Ghosh, Sujit K., 2009. "A stochastic neighborhood conditional autoregressive model for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3033-3046, June.
- Stephan R. Sain & Reinhard Furrer, 2018. "Comments on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 545-548, September.
- Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
- Ricardo Gonçalves Silva, 2004. "Bayesian Semiparametric Regression for Autoregressive Models with Possible Unit Roots," Econometrics 0405002, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:5:p:2331-2349. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.