Confidence bands for coefficients in high dimensional linear models with error-in-variables
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers 22/17, Institute for Fiscal Studies.
References listed on IDEAS
- Eric Gautier & Alexandre Tsybakov, 2011.
"High-Dimensional Instrumental Variables Regression and Confidence Sets,"
Working Papers
2011-13, Center for Research in Economics and Statistics.
- Eric Gautier & Christiern Rose, 2021. "High-dimensional instrumental variables regression and confidence sets," Working Papers hal-00591732, HAL.
- Gautier, Eric & Rose, Christiern & Tsybakov, Alexandre, 2018. "High-dimensional instrumental variables regression and confidence sets," TSE Working Papers 18-930, Toulouse School of Economics (TSE), revised Nov 2019.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Uniform post selection inference for LAD regression and other z-estimation problems,"
CeMMAP working papers
CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers 51/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers 74/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers CWP51/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Leeb, Hannes & Potscher, Benedikt M., 2008.
"Sparse estimators and the oracle property, or the return of Hodges' estimator,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
- Hannes Leeb & Benedikt M. Poetscher, 2005. "Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator," Cowles Foundation Discussion Papers 1500, Cowles Foundation for Research in Economics, Yale University, revised Apr 2007.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014.
"Central limit theorems and bootstrap in high dimensions,"
CeMMAP working papers
49/14, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers 39/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers CWP39/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers CWP49/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016.
"Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings,"
Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," CeMMAP working papers 38/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," CeMMAP working papers CWP38/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Leeb, Hannes & P tscher, Benedikt M., 2008. "Guest Editors' Editorial: Recent Developments In Model Selection And Related Areas," Econometric Theory, Cambridge University Press, vol. 24(02), pages 319-322, April.
- Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
- Alexandre Belloni & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2014. "Linear and Conic Programming Estimators in High-Dimensional Errors-in-variables Models," Working Papers 2014-34, Center for Research in Economics and Statistics.
- Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
- Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
- Eric Gautier & Alexandre Tsybakov, 2013.
"Pivotal estimation in high-dimensional regression via linear programming,"
Papers
1303.7092, arXiv.org, revised Apr 2013.
- Eric Gautier & Alexandre B, Tsybakov, 2013. "Pivotal Estimation in High-Dimensional Regression via Linear Programming," Working Papers 2013-40, Center for Research in Economics and Statistics.
- Eric Gautier & Alexandre Tsybakov, 2013. "Pivotal estimation in high-dimensional regression via linear programming," Working Papers hal-00805556, HAL.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Uniform post selection inference for LAD regression models,"
CeMMAP working papers
CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers 24/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015.
"Financial Network Systemic Risk Contributions,"
Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2011. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2011-072, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2013. "Financial network systemic risk contributions," CFS Working Paper Series 2013/20, Center for Financial Studies (CFS).
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2012. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2012-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Xiaobo Wang & Jiayu Huang & Guosheng Yin & Jian Huang & Yuanshan Wu, 2023. "Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 115-141, January.
- Fan, Jinlin & Zhang, Yaowu & Zhu, Liping, 2022. "Independence tests in the presence of measurement errors: An invariance law," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Li, Mengyan & Li, Runze & Ma, Yanyuan, 2021. "Inference in high dimensional linear measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2017. "Pivotal Estimation Via Self-Normalization for High-Dimensional Linear Models with Errors in Variables," Working Papers 2017-26, Center for Research in Economics and Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Papers 1501.03430, arXiv.org, revised Aug 2015.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers 36/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers CWP36/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Belloni, Alexandre & Hansen, Christian & Newey, Whitney, 2022. "High-dimensional linear models with many endogenous variables," Journal of Econometrics, Elsevier, vol. 228(1), pages 4-26.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018.
"LASSO-driven inference in time and space,"
CeMMAP working papers
CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018. "LASSO-Driven Inference in Time and Space," Papers 1806.05081, arXiv.org, revised May 2020.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013.
"Pivotal estimation via square-root lasso in nonparametric regression,"
CeMMAP working papers
CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022.
"Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
- Victor Chernozhukov & Whitney Newey & Rahul Singh, 2018. "De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers," Papers 1802.08667, arXiv.org, revised Oct 2022.
- Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
- Victor Chernozhukov & Whitney K. Newey & James Robins, 2018. "Double/de-biased machine learning using regularized Riesz representers," CeMMAP working papers CWP15/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Mathieu Rosenbaum & Alexandre Tsybakov, 2016. "An {l1, l2, l-infinity} Regularization Approach to High-Dimensional Errors-in-variables Models," Working Papers 2016-12, Center for Research in Economics and Statistics.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013.
"Testing Many Moment Inequalities,"
CeMMAP working papers
65/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers CWP42/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Testing many moment inequalities," CeMMAP working papers 42/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers 52/14, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Testing many moment inequalities," CeMMAP working papers CWP52/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Xiaohong Chen & Andres Santos, 2018.
"Overidentification in Regular Models,"
Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
- Xiaohong Chen & Andres Santos, 2015. "Overidentification in Regular Models," Cowles Foundation Discussion Papers 1999, Cowles Foundation for Research in Economics, Yale University.
- Xiaohong Chen & Andres Santos, 2015. "Overidentification in Regular Models," Cowles Foundation Discussion Papers 1999R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2018.
More about this item
Keywords
honest confidence regions; error-in-variables; high dimensional models;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-01-22 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:22/17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.