IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.06855.html
   My bibliography  Save this paper

Learning non-smooth models: instrumental variable quantile regressions and related problems

Author

Listed:
  • Yinchu Zhu

Abstract

This paper proposes computationally efficient methods that can be used for instrumental variable quantile regressions (IVQR) and related methods with statistical guarantees. This is much needed when we investigate heterogenous treatment effects since interactions between the endogenous treatment and control variables lead to an increased number of endogenous covariates. We prove that the GMM formulation of IVQR is NP-hard and finding an approximate solution is also NP-hard. Hence, solving the problem from a purely computational perspective seems unlikely. Instead, we aim to obtain an estimate that has good statistical properties and is not necessarily the global solution of any optimization problem. The proposal consists of employing $k$-step correction on an initial estimate. The initial estimate exploits the latest advances in mixed integer linear programming and can be computed within seconds. One theoretical contribution is that such initial estimators and Jacobian of the moment condition used in the k-step correction need not be even consistent and merely $k=4\log n$ fast iterations are needed to obtain an efficient estimator. The overall proposal scales well to handle extremely large sample sizes because lack of consistency requirement allows one to use a very small subsample to obtain the initial estimate and the k-step iterations on the full sample can be implemented efficiently. Another contribution that is of independent interest is to propose a tuning-free estimation for the Jacobian matrix, whose definition nvolves conditional densities. This Jacobian estimator generalizes bootstrap quantile standard errors and can be efficiently computed via closed-end solutions. We evaluate the performance of the proposal in simulations and an empirical example on the heterogeneous treatment effect of Job Training Partnership Act.

Suggested Citation

  • Yinchu Zhu, 2018. "Learning non-smooth models: instrumental variable quantile regressions and related problems," Papers 1805.06855, arXiv.org, revised Sep 2019.
  • Handle: RePEc:arx:papers:1805.06855
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.06855
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le‐Yu Chen & Sokbae Lee, 2018. "Exact computation of GMM estimators for instrumental variable quantile regression models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
    2. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    5. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    6. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    7. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis & Linchun Chen, 2012. "On the Asymptotic Sizes of Subset Anderson–Rubin and Lagrange Multiplier Tests in Linear Instrumental Variables Regression," Econometrica, Econometric Society, vol. 80(6), pages 2649-2666, November.
    8. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    9. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    10. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    11. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    12. Moshe Buchinsky & Jinyong Hahn, 1998. "An Alternative Estimator for the Censored Quantile Regression Model," Econometrica, Econometric Society, vol. 66(3), pages 653-672, May.
    13. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    14. Patric Müller & Sara Geer, 2016. "Censored linear model in high dimensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 75-92, March.
    15. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    16. Hong H. & Chernozhukov V., 2002. "Three-Step Censored Quantile Regression and Extramarital Affairs," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 872-882, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Liu, 2024. "Averaging Estimation for Instrumental Variables Quantile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
    2. Grigory Franguridi & Bulat Gafarov & Kaspar Wuthrich, 2020. "Bias correction for quantile regression estimators," Papers 2011.03073, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    2. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    3. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    4. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    5. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    6. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    7. Chen, Songnian & Wang, Qian, 2023. "Quantile regression with censoring and sample selection," Journal of Econometrics, Elsevier, vol. 234(1), pages 205-226.
    8. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    9. Xin Liu, 2024. "Averaging Estimation for Instrumental Variables Quantile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
    10. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    11. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    12. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    13. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    14. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    15. Chen, Songnian, 2019. "Quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 209(1), pages 1-17.
    16. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    17. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
    18. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    19. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    20. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.06855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.