A first-stage representation for instrumental variables quantile regression
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023. "A first-stage representation for instrumental variables quantile regression," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
References listed on IDEAS
- Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
- Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
- Le‐Yu Chen & Sokbae Lee, 2018.
"Exact computation of GMM estimators for instrumental variable quantile regression models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 553-567, June.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Exact computation of GMM estimators for instrumental variable quantile regression models," CeMMAP working papers CWP52/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Exact computation of GMM estimators for instrumental variable quantile regression models," CeMMAP working papers 52/17, Institute for Fiscal Studies.
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022.
"Valid t-Ratio Inference for IV,"
American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2020. "Valid t-ratio Inference for IV," Papers 2010.05058, arXiv.org.
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack R. Porter, 2021. "Valid t-ratio Inference for IV," Working Papers 2021-69, Princeton University. Economics Department..
- David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack R. Porter, 2021. "Valid t-ratio Inference for IV," NBER Working Papers 29124, National Bureau of Economic Research, Inc.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Sanderson, Eleanor & Windmeijer, Frank, 2016.
"A weak instrument F-test in linear IV models with multiple endogenous variables,"
Journal of Econometrics, Elsevier, vol. 190(2), pages 212-221.
- Eleanor Sanderson & Frank Windmeijer, 2013. "A weak instrument F-test in linear IV models with multiple endogenous variables," CeMMAP working papers CWP58/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Eleanor Sanderson & Frank Windmeijer, 2015. "A weak instrument F-test in linear IV models with multiple endogenous variables," CeMMAP working papers CWP31/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Eleanor Sanderson & Frank Windmeijer, 2015. "A weak instrument F-test in linear IV models with multiple endogenous variables," CeMMAP working papers 31/15, Institute for Fiscal Studies.
- Eleanor Sanderson & Frank Windmeijer, 2013. "A Weak Instrument F-Test in Linear IV Models with Multiple Endogenous Variables," The Centre for Market and Public Organisation 13/315, The Centre for Market and Public Organisation, University of Bristol, UK.
- Eleanor Sanderson & Frank Windmeijer, 2013. "A weak instrument F-test in linear IV models with multiple endogenous variables," CeMMAP working papers 58/13, Institute for Fiscal Studies.
- Eleanor Sanderson & Frank Windmeijer, 2014. "A Weak Instrument F-Test in Linear IV Models with Multiple Endogenous Variables," Bristol Economics Discussion Papers 14/644, School of Economics, University of Bristol, UK, revised 27 May 2015.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016.
"IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade,"
Econometrica, Econometric Society, vol. 84, pages 809-833, March.
- Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2015. "IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade," NBER Working Papers 21033, National Bureau of Economic Research, Inc.
- Zhao, Quanshui, 2001. "Asymptotically Efficient Median Regression In The Presence Of Heteroskedasticity Of Unknown Form," Econometric Theory, Cambridge University Press, vol. 17(4), pages 765-784, August.
- Galvao, Antonio F. & Montes-Rojas, Gabriel, 2015. "On the equivalence of instrumental variables estimators for linear models," Economics Letters, Elsevier, vol. 134(C), pages 13-15.
- Ma, Lingjie & Koenker, Roger, 2006.
"Quantile regression methods for recursive structural equation models,"
Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
- Lingjie Ma & Roger Koenker, 2004. "Quantile regression methods for recursive structural equation models," CeMMAP working papers CWP01/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
- Lee, Sokbae, 2007.
"Endogeneity in quantile regression models: A control function approach,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers 08/04, Institute for Fiscal Studies.
- Sokbae Lee, 2004. "Endogeneity in Quantile Regression Models: A Control Function Approach," Econometric Society 2004 North American Summer Meetings 521, Econometric Society.
- Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
- Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
- Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-1575, September.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Tae-Hwan Kim & Christophe Muller, 2004.
"Two-stage quantile regression when the first stage is based on quantile regression,"
Econometrics Journal, Royal Economic Society, vol. 7(1), pages 218-231, June.
- Christophe Muller & Tae-Hwan Kim, 2004. "Two-Stage Quantile Regression When The First Stage Is Based On Quantile Regression," Working Papers. Serie AD 2004-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
- Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006.
"Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure,"
Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
- Joshua Angrist & Victor Chernozhukov & Ivan Fernandez-Val, 2004. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," NBER Working Papers 10428, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Christian Hansen, 2004. "The Effects of 401(K) Participation on the Wealth Distribution: An Instrumental Quantile Regression Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 735-751, August.
- Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
- Douglas Staiger & James H. Stock, 1997.
"Instrumental Variables Regression with Weak Instruments,"
Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
- Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
- Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
- Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2007. "Inference approaches for instrumental variable quantile regression," Economics Letters, Elsevier, vol. 95(2), pages 272-277, May.
- Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2017. "Smoothed GMM for quantile models," Papers 1707.03436, arXiv.org, revised Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- David M. Kaplan & Xin Liu, 2024.
"k-Class instrumental variables quantile regression,"
Empirical Economics, Springer, vol. 67(1), pages 111-141, July.
- David M. Kaplan & Xin Liu, 2021. "k-Class Instrumental Variables Quantile Regression," Working Papers 2104, Department of Economics, University of Missouri.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Javier Alejo & Antonio F. Galvao & Gabriel Montes-Rojas, 2020. "A first-stage test for instrumental variables quantile regression," Asociación Argentina de Economía Política: Working Papers 4304, Asociación Argentina de Economía Política.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Muller, Christophe, 2018.
"Heterogeneity and nonconstant effect in two-stage quantile regression,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
- Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
- Christophe Muller, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
- Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
- Xin Liu, 2024.
"Averaging Estimation for Instrumental Variables Quantile Regression,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Working Papers 1907, Department of Economics, University of Missouri.
- Xin Liu, 2019. "Averaging estimation for instrumental variables quantile regression," Papers 1910.04245, arXiv.org.
- Christophe Muller, 2019.
"Linear Quantile Regression and Endogeneity Correction,"
Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(5), pages 123-128, August.
- Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Working Papers halshs-02272874, HAL.
- Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," Post-Print hal-02618513, HAL.
- Christophe Muller, 2019. "Linear Quantile Regression and Endogeneity Correction," AMSE Working Papers 1920, Aix-Marseille School of Economics, France.
- de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019.
"Smoothed GMM for quantile models,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan, 2017. "Smoothed instrumental variables quantile regression, with estimation of quantile Euler equations," Working Papers 1710, Department of Economics, University of Missouri, revised 28 Feb 2018.
- Luciano de Castro & Antonio F. Galvao & David M. Kaplan & Xin Liu, 2018. "Smoothed GMM for quantile models," Working Papers 1803, Department of Economics, University of Missouri.
- Tae-Hwan Kim & Christophe Muller, 2020. "Inconsistency transmission and variance reduction in two-stage quantile regression," Post-Print hal-02084505, HAL.
- Tae-Hwan Kim & Christophe Muller, 2017.
"A Robust Test of Exogeneity Based on Quantile Regressions,"
Working Papers
halshs-01508067, HAL.
- Tae-Hwan Kim & Christophe Muller, 2017. "A robust test of exogeneity based on quantile regressions," Post-Print hal-01647506, HAL.
- Tae-Hwan Kim & Christophe Muller, 2017. "A Robust Test of Exogeneity Based on Quantile Regressions," AMSE Working Papers 1716, Aix-Marseille School of Economics, France.
- He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
- Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
- Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
- Tae-Hwan Kim & Christophe Muller, 2013.
"A Test for Endogeneity in Conditional Quantiles,"
Working Papers
halshs-00854527, HAL.
- Tae-Hwan Kim & Christophe Muller, 2013. "A Test for Endogeneity in Conditional Quantiles," AMSE Working Papers 1342, Aix-Marseille School of Economics, France, revised Aug 2013.
- Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015.
"Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions,"
CeMMAP working papers
68/15, Institute for Fiscal Studies.
- Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers CWP68/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Tae-Hwan Kim & Christophe Muller, 2012. "A test for endogeneity in conditional quantile models," Working papers 2012rwp-49, Yonsei University, Yonsei Economics Research Institute.
- Lee, Sokbae, 2007.
"Endogeneity in quantile regression models: A control function approach,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers 08/04, Institute for Fiscal Studies.
- Sokbae Lee, 2004. "Endogeneity in Quantile Regression Models: A Control Function Approach," Econometric Society 2004 North American Summer Meetings 521, Econometric Society.
- Sokbae (Simon) Lee, 2004. "Endogeneity in quantile regression models: a control function approach," CeMMAP working papers CWP08/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Tae-Hwan Kim & Christophe Muller, 2012.
"Bias Transmission and Variance Reduction in Two-Stage Quantile Regression,"
Working Papers
halshs-00793372, HAL.
- Tae-Hwan Kim, & Christophe Muller, 2012. "Bias Transmission and Variance Reduction in Two-Stage Quantile Regression," AMSE Working Papers 1221, Aix-Marseille School of Economics, France.
- Horowitz, Joel L. & Lee, Sokbae, 2009.
"Testing a parametric quantile-regression model with an endogenous explanatory variable against a nonparametric alternative,"
Journal of Econometrics, Elsevier, vol. 152(2), pages 141-152, October.
- Joel L. Horowitz & Sokbae (Simon) Lee, 2007. "Testing a parametric quantile-regression model with an endogenous explanatory variable against a nonparametric alternative," CeMMAP working papers CWP02/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-04-12 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2102.01212. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.