IDEAS home Printed from https://ideas.repec.org/p/ube/dpvwib/dp1509.html
   My bibliography  Save this paper

Semiparametric estimation of quantile treatment effects with endogeneity

Author

Listed:
  • Kaspar W thrich

Abstract

This paper studies estimation of conditional and unconditional quantile treatment effects based on the instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2004, 2005, 2006). I introduce a class of semiparametric plug-in estimators based on closed form solutions derived from the IVQR moment conditions. These estimators do not rely on separability of the structural quantile function, while retaining computational tractability and root-n-consistency. Functional central limit theorems and bootstrap validity results for the estimators of the quantile treatment effects and other functionals are provided. I apply my method to reanalyze the effect of 401(k) plans on individual savings behavior.

Suggested Citation

  • Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
  • Handle: RePEc:ube:dpvwib:dp1509
    as

    Download full text from publisher

    File URL: https://repec.vwiit.ch/dp/dp1509.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    2. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    3. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    4. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    5. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    6. James M. Poterba & Steven F. Venti, 1998. "Personal Retirement Saving Programs and Asset Accumulation: Reconciling the Evidence," NBER Chapters, in: Frontiers in the Economics of Aging, pages 23-124, National Bureau of Economic Research, Inc.
    7. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    8. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    9. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    10. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    11. David A. Wise, 1994. "Studies in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise94-1, June.
    12. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    13. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    14. Patrick Gagliardini & Olivier Scaillet, 2012. "Nonparametric Instrumental Variable Estimation of Structural Quantile Effects," Econometrica, Econometric Society, vol. 80(4), pages 1533-1562, July.
    15. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2009. "Finite sample inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 152(2), pages 93-103, October.
    16. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    17. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    18. V. Chernozhukov & C. Hansen, 2013. "Quantile Models with Endogeneity," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
    19. Poterba, James M. & Venti, Steven F. & Wise, David A., 1995. "Do 401(k) contributions crowd out other personal saving?," Journal of Public Economics, Elsevier, vol. 58(1), pages 1-32, September.
    20. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    22. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    23. Chernozhukov, Victor & Hansen, Christian & Jansson, Michael, 2007. "Inference approaches for instrumental variable quantile regression," Economics Letters, Elsevier, vol. 95(2), pages 272-277, May.
    24. Joel L. Horowitz & Sokbae Lee, 2007. "Nonparametric Instrumental Variables Estimation of a Quantile Regression Model," Econometrica, Econometric Society, vol. 75(4), pages 1191-1208, July.
    25. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," EIEF Working Papers Series 1329, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2013.
    26. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    27. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    28. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    29. Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
    30. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    31. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
    32. David A. Wise, 1998. "Frontiers in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise98-1, June.
    33. Benjamin, Daniel J., 2003. "Does 401(k) eligibility increase saving?: Evidence from propensity score subclassification," Journal of Public Economics, Elsevier, vol. 87(5-6), pages 1259-1290, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    2. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    3. Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
    4. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    5. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    6. V. Chernozhukov & C. Hansen, 2013. "Quantile Models with Endogeneity," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 57-81, May.
    7. Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023. "A first-stage representation for instrumental variables quantile regression," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
    8. Fusejima, Koki, 2024. "Identification of multi-valued treatment effects with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 238(1).
    9. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    10. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    11. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    12. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    13. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    14. Yingying DONG & Ying-Ying LEE & Michael GOU, 2019. "Regression Discontinuity Designs with a Continuous Treatment," Discussion papers 19058, Research Institute of Economy, Trade and Industry (RIETI).
    15. Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
    16. Koki Fusejima, 2020. "Identification of multi-valued treatment effects with unobserved heterogeneity," Papers 2010.04385, arXiv.org, revised Apr 2023.
    17. Christina Christou & Ruthira Naraidoo & Rangan Gupta & Won Joong Kim, 2018. "Monetary Policy Reaction Functions of the TICKs: A Quantile Regression Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(15), pages 3552-3565, December.
    18. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    19. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    20. Apergis, Nicholas & Christou, Christina, 2015. "The behaviour of the bank lending channel when interest rates approach the zero lower bound: Evidence from quantile regressions," Economic Modelling, Elsevier, vol. 49(C), pages 296-307.

    More about this item

    Keywords

    instrumental variables; quantile treatment effects; distribution regression; functional central limit theorem; Hadamard differentiability; exchangeable bootstrap;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp1509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Franz Koelliker (email available below). General contact details of provider: https://edirc.repec.org/data/vwibech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.