IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0304469.html
   My bibliography  Save this paper

Using Recurrent Neural Networks To Forecasting of Forex

Author

Listed:
  • V. V. Kondratenko
  • Yu. A Kuperin

Abstract

This paper reports empirical evidence that a neural networks model is applicable to the statistically reliable prediction of foreign exchange rates. Time series data and technical indicators such as moving average, are fed to neural nets to capture the underlying "rules" of the movement in currency exchange rates. The trained recurrent neural networks forecast the exchange rates between American Dollar and four other major currencies, Japanese Yen, Swiss Frank, British Pound and EURO. Various statistical estimates of forecast quality have been carried out. Obtained results show, that neural networks are able to give forecast with coefficient of multiple determination not worse then 0.65. Linear and nonlinear statistical data preprocessing, such as Kolmogorov-Smirnov test and Hurst exponents for each currency were calculated and analyzed.

Suggested Citation

  • V. V. Kondratenko & Yu. A Kuperin, 2003. "Using Recurrent Neural Networks To Forecasting of Forex," Papers cond-mat/0304469, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0304469
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0304469
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    2. Filippo Castiglione, 2001. "Forecasting Price Increments Using An Artificial Neural Network," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 45-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ondrej Bednar, 2021. "The Causal Impact of the Rapid Czech Interest Rate Hike on the Czech Exchange Rate Assessed by the Bayesian Structural Time Series Model," International Journal of Economic Sciences, European Research Center, vol. 10(2), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    2. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.
    3. Zoran Vojinovic & Vojislav Kecman & Rainer Seidel, 2001. "A data mining approach to financial time series modelling and forecasting," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(4), pages 225-239, December.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    7. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    8. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    9. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    10. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    11. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    12. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    13. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    16. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    17. Yang, Jian & Su, Xiaojing & Kolari, James W., 2008. "Do Euro exchange rates follow a martingale? Some out-of-sample evidence," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 729-740, May.
    18. Kock, Anders Bredahl & Teräsvirta, Timo, 2014. "Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009," International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
    19. Mayer, Walter J. & Liu, Feng & Dang, Xin, 2017. "Improving the power of the Diebold–Mariano–West test for least squares predictions," International Journal of Forecasting, Elsevier, vol. 33(3), pages 618-626.
    20. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0304469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.