IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.12399.html
   My bibliography  Save this paper

FinSphere: A Conversational Stock Analysis Agent Equipped with Quantitative Tools based on Real-Time Database

Author

Listed:
  • Shijie Han
  • Changhai Zhou
  • Yiqing Shen
  • Tianning Sun
  • Yuhua Zhou
  • Xiaoxia Wang
  • Zhixiao Yang
  • Jingshu Zhang
  • Hongguang Li

Abstract

Current financial Large Language Models (LLMs) struggle with two critical limitations: a lack of depth in stock analysis, which impedes their ability to generate professional-grade insights, and the absence of objective evaluation metrics to assess the quality of stock analysis reports. To address these challenges, this paper introduces FinSphere, a conversational stock analysis agent, along with three major contributions: (1) Stocksis, a dataset curated by industry experts to enhance LLMs' stock analysis capabilities, (2) AnalyScore, a systematic evaluation framework for assessing stock analysis quality, and (3) FinSphere, an AI agent that can generate high-quality stock analysis reports in response to user queries. Experiments demonstrate that FinSphere achieves superior performance compared to both general and domain-specific LLMs, as well as existing agent-based systems, even when they are enhanced with real-time data access and few-shot guidance. The integrated framework, which combines real-time data feeds, quantitative tools, and an instruction-tuned LLM, yields substantial improvements in both analytical quality and practical applicability for real-world stock analysis.

Suggested Citation

  • Shijie Han & Changhai Zhou & Yiqing Shen & Tianning Sun & Yuhua Zhou & Xiaoxia Wang & Zhixiao Yang & Jingshu Zhang & Hongguang Li, 2025. "FinSphere: A Conversational Stock Analysis Agent Equipped with Quantitative Tools based on Real-Time Database," Papers 2501.12399, arXiv.org.
  • Handle: RePEc:arx:papers:2501.12399
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.12399
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Ding & Yinheng Li & Junhao Wang & Hang Chen, 2024. "Large Language Model Agent in Financial Trading: A Survey," Papers 2408.06361, arXiv.org.
    2. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    3. Taejin Park, 2024. "Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework," Papers 2403.19735, arXiv.org.
    4. Alex Kim & Maximilian Muhn & Valeri Nikolaev, 2024. "Financial Statement Analysis with Large Language Models," Papers 2407.17866, arXiv.org, revised Nov 2024.
    5. Yi Yang & Yixuan Tang & Kar Yan Tam, 2023. "InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning," Papers 2309.13064, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuewen Han & Neng Wang & Shangkun Che & Hongyang Yang & Kunpeng Zhang & Sean Xin Xu, 2024. "Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research," Papers 2411.04788, arXiv.org.
    2. Yuzhe Yang & Yifei Zhang & Yan Hu & Yilin Guo & Ruoli Gan & Yueru He & Mingcong Lei & Xiao Zhang & Haining Wang & Qianqian Xie & Jimin Huang & Honghai Yu & Benyou Wang, 2024. "UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models," Papers 2410.14059, arXiv.org, revised Feb 2025.
    3. Tianyu Zhou & Pinqiao Wang & Yilin Wu & Hongyang Yang, 2024. "FinRobot: AI Agent for Equity Research and Valuation with Large Language Models," Papers 2411.08804, arXiv.org.
    4. Junhua Liu, 2024. "A Survey of Financial AI: Architectures, Advances and Open Challenges," Papers 2411.12747, arXiv.org.
    5. Haohang Li & Yupeng Cao & Yangyang Yu & Shashidhar Reddy Javaji & Zhiyang Deng & Yueru He & Yuechen Jiang & Zining Zhu & Koduvayur Subbalakshmi & Guojun Xiong & Jimin Huang & Lingfei Qian & Xueqing Pe, 2024. "INVESTORBENCH: A Benchmark for Financial Decision-Making Tasks with LLM-based Agent," Papers 2412.18174, arXiv.org.
    6. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    7. Zhizhuo Kou & Holam Yu & Jingshu Peng & Lei Chen, 2024. "Automate Strategy Finding with LLM in Quant investment," Papers 2409.06289, arXiv.org.
    8. David Kuo Chuen Lee & Chong Guan & Yinghui Yu & Qinxu Ding, 2024. "A Comprehensive Review of Generative AI in Finance," FinTech, MDPI, vol. 3(3), pages 1-19, September.
    9. Joel R. Bock, 2024. "Generating long-horizon stock "buy" signals with a neural language model," Papers 2410.18988, arXiv.org.
    10. Qianggang Ding & Haochen Shi & Bang Liu, 2024. "TradExpert: Revolutionizing Trading with Mixture of Expert LLMs," Papers 2411.00782, arXiv.org.
    11. Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2024. "Forecasting Credit Ratings: A Case Study where Traditional Methods Outperform Generative LLMs," Papers 2407.17624, arXiv.org, revised Jan 2025.
    12. Zhiyu Cao & Zachary Feinstein, 2024. "Large Language Model in Financial Regulatory Interpretation," Papers 2405.06808, arXiv.org, revised Jul 2024.
    13. Caterina Giannetti & Maria Saveria Mavillonio, 2024. "Crowdfunding Success: Human Insights vs Algorithmic Textual Extraction," Discussion Papers 2024/315, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    14. Jean Lee & Nicholas Stevens & Soyeon Caren Han & Minseok Song, 2024. "A Survey of Large Language Models in Finance (FinLLMs)," Papers 2402.02315, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.12399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.