IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.19735.html
   My bibliography  Save this paper

Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework

Author

Listed:
  • Taejin Park

Abstract

This paper introduces a Large Language Model (LLM)-based multi-agent framework designed to enhance anomaly detection within financial market data, tackling the longstanding challenge of manually verifying system-generated anomaly alerts. The framework harnesses a collaborative network of AI agents, each specialised in distinct functions including data conversion, expert analysis via web research, institutional knowledge utilization or cross-checking and report consolidation and management roles. By coordinating these agents towards a common objective, the framework provides a comprehensive and automated approach for validating and interpreting financial data anomalies. I analyse the S&P 500 index to demonstrate the framework's proficiency in enhancing the efficiency, accuracy and reduction of human intervention in financial market monitoring. The integration of AI's autonomous functionalities with established analytical methods not only underscores the framework's effectiveness in anomaly detection but also signals its broader applicability in supporting financial market monitoring.

Suggested Citation

  • Taejin Park, 2024. "Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework," Papers 2403.19735, arXiv.org.
  • Handle: RePEc:arx:papers:2403.19735
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.19735
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.19735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.