IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.16574.html
   My bibliography  Save this paper

Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete?

Author

Listed:
  • Connor Douglas
  • Foster Provost
  • Arun Sundararajan

Abstract

Algorithmic agents are used in a variety of competitive decision settings, notably in making pricing decisions in contexts that range from online retail to residential home rentals. Business managers, algorithm designers, legal scholars, and regulators alike are all starting to consider the ramifications of "algorithmic collusion." We study the emergent behavior of multi-armed bandit machine learning algorithms used in situations where agents are competing, but they have no information about the strategic interaction they are engaged in. Using a general-form repeated Prisoner's Dilemma game, agents engage in online learning with no prior model of game structure and no knowledge of competitors' states or actions (e.g., no observation of competing prices). We show that these context-free bandits, with no knowledge of opponents' choices or outcomes, still will consistently learn collusive behavior - what we call "naive collusion." We primarily study this system through an analytical model and examine perturbations to the model through simulations. Our findings have several notable implications for regulators. First, calls to limit algorithms from conditioning on competitors' prices are insufficient to prevent algorithmic collusion. This is a direct result of collusion arising even in the naive setting. Second, symmetry in algorithms can increase collusion potential. This highlights a new, simple mechanism for "hub-and-spoke" algorithmic collusion. A central distributor need not imbue its algorithm with supra-competitive tendencies for apparent collusion to arise; it can simply arise by using certain (common) machine learning algorithms. Finally, we highlight that collusive outcomes depend starkly on the specific algorithm being used, and we highlight market and algorithmic conditions under which it will be unknown a priori whether collusion occurs.

Suggested Citation

  • Connor Douglas & Foster Provost & Arun Sundararajan, 2024. "Naive Algorithmic Collusion: When Do Bandit Learners Cooperate and When Do They Compete?," Papers 2411.16574, arXiv.org.
  • Handle: RePEc:arx:papers:2411.16574
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.16574
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    2. Gautier, Axel & Ittoo, Ashwin & Van Cleynenbreugel, Pieter, 2020. "AI algorithms, price discrimination and collusion: a technological, economic and legal perspective," LIDAM Reprints CORE 3138, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    4. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    5. Axel Gautier & Ashwin Ittoo & Pieter Cleynenbreugel, 2020. "AI algorithms, price discrimination and collusion: a technological, economic and legal perspective," European Journal of Law and Economics, Springer, vol. 50(3), pages 405-435, December.
    6. Waltman, Ludo & Kaymak, Uzay, 2008. "Q-learning agents in a Cournot oligopoly model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3275-3293, October.
    7. Joseph E Harrington, 2018. "Developing Competition Law For Collusion By Autonomous Artificial Agents," Journal of Competition Law and Economics, Oxford University Press, vol. 14(3), pages 331-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    2. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    3. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    4. Jason D. Hartline & Sheng Long & Chenhao Zhang, 2024. "Regulation of Algorithmic Collusion," Papers 2401.15794, arXiv.org, revised Sep 2024.
    5. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    6. Dubus, Antoine, 2024. "Behavior-based algorithmic pricing," Information Economics and Policy, Elsevier, vol. 66(C).
    7. Simon Martin & Alexander Rasch, 2022. "Collusion by Algorithm: The Role of Unobserved Actions," CESifo Working Paper Series 9629, CESifo.
    8. Florian Peiseler & Alexander Rasch & Shiva Shekhar, 2022. "Imperfect information, algorithmic price discrimination, and collusion," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 516-549, April.
    9. Fourberg, Niklas & Marques Magalhaes, Katrin & Wiewiorra, Lukas, 2023. "They Are Among Us: Pricing Behavior of Algorithms in the Field," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 277958, International Telecommunications Society (ITS).
    10. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    11. Lucila Porto, 2022. "Q-Learning algorithms in a Hotelling model," Asociación Argentina de Economía Política: Working Papers 4587, Asociación Argentina de Economía Política.
    12. Werner, Tobias, 2021. "Algorithmic and human collusion," DICE Discussion Papers 372, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    13. Galit Askenazi-Golan & Domenico Mergoni Cecchelli & Edward Plumb, 2024. "Reinforcement Learning, Collusion, and the Folk Theorem," Papers 2411.12725, arXiv.org.
    14. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    15. Daehyeon Park & Doojin Ryu, 2022. "Supply chain ethics and transparency: An agent‐based model approach with Q‐learning agents," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3331-3337, December.
    16. Zhang Xu & Wei Zhao, 2024. "On Mechanism Underlying Algorithmic Collusion," Papers 2409.01147, arXiv.org.
    17. Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.
    18. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    19. Laura Abrardi & Carlo Cambini & Laura Rondi, 2022. "Artificial intelligence, firms and consumer behavior: A survey," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 969-991, September.
    20. Colombo, Stefano & Filippini, Luigi & Pignataro, Aldo, 2024. "Information sharing, personalized pricing, and collusion," Information Economics and Policy, Elsevier, vol. 66(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.16574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.