IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.07585.html
   My bibliography  Save this paper

Reinforcement Learning Framework for Quantitative Trading

Author

Listed:
  • Alhassan S. Yasin
  • Prabdeep S. Gill

Abstract

The inherent volatility and dynamic fluctuations within the financial stock market underscore the necessity for investors to employ a comprehensive and reliable approach that integrates risk management strategies, market trends, and the movement trends of individual securities. By evaluating specific data, investors can make more informed decisions. However, the current body of literature lacks substantial evidence supporting the practical efficacy of reinforcement learning (RL) agents, as many models have only demonstrated success in back testing using historical data. This highlights the urgent need for a more advanced methodology capable of addressing these challenges. There is a significant disconnect in the effective utilization of financial indicators to better understand the potential market trends of individual securities. The disclosure of successful trading strategies is often restricted within financial markets, resulting in a scarcity of widely documented and published strategies leveraging RL. Furthermore, current research frequently overlooks the identification of financial indicators correlated with various market trends and their potential advantages. This research endeavors to address these complexities by enhancing the ability of RL agents to effectively differentiate between positive and negative buy/sell actions using financial indicators. While we do not address all concerns, this paper provides deeper insights and commentary on the utilization of technical indicators and their benefits within reinforcement learning. This work establishes a foundational framework for further exploration and investigation of more complex scenarios.

Suggested Citation

  • Alhassan S. Yasin & Prabdeep S. Gill, 2024. "Reinforcement Learning Framework for Quantitative Trading," Papers 2411.07585, arXiv.org.
  • Handle: RePEc:arx:papers:2411.07585
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.07585
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maochun Xu & Zixun Lan & Zheng Tao & Jiawei Du & Zongao Ye, 2023. "Deep Reinforcement Learning for Quantitative Trading," Papers 2312.15730, arXiv.org.
    2. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahua Xu & Daniel Perez & Yebo Feng & Benjamin Livshits, 2023. "Auto.gov: Learning-based On-chain Governance for Decentralized Finance (DeFi)," Papers 2302.09551, arXiv.org, revised May 2023.
    2. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    3. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    4. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    5. Charl Maree & Christian W. Omlin, 2022. "Balancing Profit, Risk, and Sustainability for Portfolio Management," Papers 2207.02134, arXiv.org.
    6. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    7. Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
    8. Miquel Noguer i Alonso & Sonam Srivastava, 2020. "Deep Reinforcement Learning for Asset Allocation in US Equities," Papers 2010.04404, arXiv.org.
    9. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    10. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    11. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    12. Nymisha Bandi & Theja Tulabandhula, 2020. "Off-Policy Optimization of Portfolio Allocation Policies under Constraints," Papers 2012.11715, arXiv.org.
    13. Alessio Brini & Daniele Tantari, 2021. "Deep Reinforcement Trading with Predictable Returns," Papers 2104.14683, arXiv.org, revised May 2023.
    14. Jian Guo & Heung-Yeung Shum, 2024. "Large Investment Model," Papers 2408.10255, arXiv.org, revised Aug 2024.
    15. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    16. Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Brini, Alessio & Tedeschi, Gabriele & Tantari, Daniele, 2023. "Reinforcement learning policy recommendation for interbank network stability," Journal of Financial Stability, Elsevier, vol. 67(C).
    18. Haoren Zhu & Pengfei Zhao & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns," Papers 2406.11886, arXiv.org.
    19. Yasuhiro Nakayama & Tomochika Sawaki, 2023. "Causal Inference on Investment Constraints and Non-stationarity in Dynamic Portfolio Optimization through Reinforcement Learning," Papers 2311.04946, arXiv.org.
    20. Hans Buhler & Lukas Gonon & Josef Teichmann & Ben Wood, 2018. "Deep Hedging," Papers 1802.03042, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.07585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.