IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.11886.html
   My bibliography  Save this paper

Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns

Author

Listed:
  • Haoren Zhu
  • Pengfei Zhao
  • Wilfred Siu Hung NG
  • Dik Lun Lee

Abstract

Financial assets exhibit complex dependency structures, which are crucial for investors to create diversified portfolios to mitigate risk in volatile financial markets. To explore the financial asset dependencies dynamics, we propose a novel approach that models the dependencies of assets as an Asset Dependency Matrix (ADM) and treats the ADM sequences as image sequences. This allows us to leverage deep learning-based video prediction methods to capture the spatiotemporal dependencies among assets. However, unlike images where neighboring pixels exhibit explicit spatiotemporal dependencies due to the natural continuity of object movements, assets in ADM do not have a natural order. This poses challenges to organizing the relational assets to reveal better the spatiotemporal dependencies among neighboring assets for ADM forecasting. To tackle the challenges, we propose the Asset Dependency Neural Network (ADNN), which employs the Convolutional Long Short-Term Memory (ConvLSTM) network, a highly successful method for video prediction. ADNN can employ static and dynamic transformation functions to optimize the representations of the ADM. Through extensive experiments, we demonstrate that our proposed framework consistently outperforms the baselines in the ADM prediction and downstream application tasks. This research contributes to understanding and predicting asset dependencies, offering valuable insights for financial market participants.

Suggested Citation

  • Haoren Zhu & Pengfei Zhao & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "Financial Assets Dependency Prediction Utilizing Spatiotemporal Patterns," Papers 2406.11886, arXiv.org.
  • Handle: RePEc:arx:papers:2406.11886
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.11886
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Baesel, Jerome B, 1974. "On the Assessment of Risk: Some Further Considerations," Journal of Finance, American Finance Association, vol. 29(5), pages 1491-1494, December.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Elton, Edwin J. & Gruber, Martin J. & Padberg, Manfred W., 1977. "Simple Rules for Optimal Portfolio Selection: The Multi Group Case," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(3), pages 329-345, September.
    5. Altomonte, Carlo & Rungi, Armando, 2013. "Business Groups as Hierarchies of Firms: Determinants of Vertical Integration and Performance," Economy and Society 148920, Fondazione Eni Enrico Mattei (FEEM).
    6. Blume, Marshall E, 1975. "Betas and Their Regression Tendencies," Journal of Finance, American Finance Association, vol. 30(3), pages 785-795, June.
    7. Ng, Victor & Engle, Robert F. & Rothschild, Michael, 1992. "A multi-dynamic-factor model for stock returns," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 245-266.
    8. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    9. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    10. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-1232, December.
    11. Vasicek, Oldrich A, 1973. "A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas," Journal of Finance, American Finance Association, vol. 28(5), pages 1233-1239, December.
    12. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    13. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    14. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    15. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    2. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    3. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    4. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    5. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    6. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    7. Duong Le, 2017. "Relationship between Crude Oil Prices and the U.S. Dollar Exchange Rates: Constant or Time-varying?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 7(5), pages 1-6.
    8. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    9. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    11. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
    12. Tule, Moses K. & Ndako, Umar B. & Onipede, Samuel F., 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, Elsevier, vol. 35(C), pages 57-65.
    13. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    14. Moses K. Tule & Umar B. Ndako & Samuel F. Onipede, 2017. "Oil price shocks and volatility spillovers in the Nigerian sovereign bond market," Review of Financial Economics, John Wiley & Sons, vol. 35(1), pages 57-65, November.
    15. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    16. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    17. Abu S. Amin & Lucjan T. Orlowski, 2014. "Returns, Volatilities, and Correlations Across Mature, Regional, and Frontier Markets: Evidence from South Asia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(3), pages 5-27, May.
    18. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    19. Manabu Asai & Michael McAleer, 2009. "Dynamic Conditional Correlations for Asymmetric Processes," CARF F-Series CARF-F-168, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    21. repec:bgu:wpaper:0608 is not listed on IDEAS
    22. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.11886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.