Deep Reinforcement Trading with Predictable Returns
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fabrizio Lillo & J. Doyne Farmer & Rosario N. Mantegna, 2003. "Master curve for price-impact function," Nature, Nature, vol. 421(6919), pages 129-130, January.
- Ayman Chaouki & Stephen Hardiman & Christian Schmidt & Emmanuel S'eri'e & Joachim de Lataillade, 2020. "Deep Deterministic Portfolio Optimization," Papers 2003.06497, arXiv.org, revised Apr 2020.
- Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
- Nicolae Gârleanu & Lasse Heje Pedersen, 2013.
"Dynamic Trading with Predictable Returns and Transaction Costs,"
Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
- Pedersen, Lasse Heje & Garleanu, Nicolae Bogdan, 2009. "Dynamic Trading with Predictable Returns and Transaction Costs," CEPR Discussion Papers 7392, C.E.P.R. Discussion Papers.
- Nicolae B. Garleanu & Lasse H. Pedersen, 2009. "Dynamic Trading with Predictable Returns and Transaction Costs," NBER Working Papers 15205, National Bureau of Economic Research, Inc.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Clifford S. Asness & Tobias J. Moskowitz & Lasse Heje Pedersen, 2013. "Value and Momentum Everywhere," Journal of Finance, American Finance Association, vol. 68(3), pages 929-985, June.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
- Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Moskowitz, Tobias J. & Ooi, Yao Hua & Pedersen, Lasse Heje, 2012. "Time series momentum," Journal of Financial Economics, Elsevier, vol. 104(2), pages 228-250.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Brini, Alessio & Tantari, Daniele, 2023. "Deep reinforcement trading with predictable returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020.
"Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
- Hossein Rad & Rand Low & Joelle Miffre & Robert Faff, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Post-Print hal-02868473, HAL.
- Barroso, Pedro & Santa-Clara, Pedro, 2015. "Momentum has its moments," Journal of Financial Economics, Elsevier, vol. 116(1), pages 111-120.
- Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018.
"Risk Everywhere: Modeling and Managing Volatility,"
The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
- Pedersen, Lasse Heje & Bollerslev, Tim & Hood, Benjamin & Huss, John, 2018. "Risk Everywhere: Modeling and Managing Volatility," CEPR Discussion Papers 12687, C.E.P.R. Discussion Papers.
- Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
- Ghaemi Asl, Mahdi & Rashidi, Muhammad Mahdi & Tavakkoli, Hamid Raza & Rezgui, Hichem, 2024. "Does Islamic investing modify portfolio performance? Time-varying optimization strategies for conventional and Shariah energy-ESG-utilities portfolio," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 37-57.
- Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
- Zhang, Jinqing & Jin, Zeyu & An, Yunbi, 2017. "Dynamic portfolio optimization with ambiguity aversion," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 95-109.
- Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
- Paul Glasserman & Xingbo Xu, 2013. "Robust Portfolio Control with Stochastic Factor Dynamics," Operations Research, INFORMS, vol. 61(4), pages 874-893, August.
- Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
- Martin H. Schmidt, 2017. "Trading strategies based on past returns: evidence from Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(2), pages 201-256, May.
- Ngo, Vu Minh & Nguyen, Huan Huu & Van Nguyen, Phuc, 2023. "Does reinforcement learning outperform deep learning and traditional portfolio optimization models in frontier and developed financial markets?," Research in International Business and Finance, Elsevier, vol. 65(C).
- Zechu Li & Xiao-Yang Liu & Jiahao Zheng & Zhaoran Wang & Anwar Walid & Jian Guo, 2021. "FinRL-Podracer: High Performance and Scalable Deep Reinforcement Learning for Quantitative Finance," Papers 2111.05188, arXiv.org.
- Borgards, Oliver, 2021. "Dynamic time series momentum of cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Thibault Jaisson, 2021. "Deep differentiable reinforcement learning and optimal trading," Papers 2112.02944, arXiv.org, revised Apr 2022.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2021-05-10 (Computational Economics)
- NEP-CWA-2021-05-10 (Central and Western Asia)
- NEP-FMK-2021-05-10 (Financial Markets)
- NEP-MST-2021-05-10 (Market Microstructure)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.14683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.