IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.05946.html
   My bibliography  Save this paper

Artificial Intelligence and Spontaneous Collusion

Author

Listed:
  • Martino Banchio
  • Giacomo Mantegazza

Abstract

We develop a tractable model for studying strategic interactions between learning algorithms. We uncover a mechanism responsible for the emergence of algorithmic collusion. We observe that algorithms periodically coordinate on actions that are more profitable than static Nash equilibria. This novel collusive channel relies on an endogenous statistical linkage in the algorithms' estimates which we call spontaneous coupling. The model's parameters predict whether the statistical linkage will appear, and what market structures facilitate algorithmic collusion. We show that spontaneous coupling can sustain collusion in prices and market shares, complementing experimental findings in the literature. Finally, we apply our results to design algorithmic markets.

Suggested Citation

  • Martino Banchio & Giacomo Mantegazza, 2022. "Artificial Intelligence and Spontaneous Collusion," Papers 2202.05946, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2202.05946
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.05946
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    4. Calzolari, Giacomo & Calvano, Emilio & Denicolo, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," CEPR Discussion Papers 15738, C.E.P.R. Discussion Papers.
    5. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    6. Zach Y. Brown & Alexander MacKay, 2023. "Competition in Pricing Algorithms," American Economic Journal: Microeconomics, American Economic Association, vol. 15(2), pages 109-156, May.
    7. Martino Banchio & Andrzej Skrzypacz, 2022. "Artificial Intelligence and Auction Design," Papers 2202.05947, arXiv.org.
    8. Maximilian Kasy & Anja Sautmann, 2021. "Adaptive Treatment Assignment in Experiments for Policy Choice," Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
    9. Hal Varian, 2018. "Artificial Intelligence, Economics, and Industrial Organization," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 399-419, National Bureau of Economic Research, Inc.
    10. Calvano, Emilio & Calzolari, Giacomo & Denicoló, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    11. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    12. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    13. Lawrence M. Wein, 1992. "Dynamic Scheduling of a Multiclass Make-to-Stock Queue," Operations Research, INFORMS, vol. 40(4), pages 724-735, August.
    14. Harris, Christopher, 1998. "On the Rate of Convergence of Continuous-Time Fictitious Play," Games and Economic Behavior, Elsevier, vol. 22(2), pages 238-259, February.
    15. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    16. Erev, Ido & Bereby-Meyer, Yoella & Roth, Alvin E., 1999. "The effect of adding a constant to all payoffs: experimental investigation, and implications for reinforcement learning models," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 111-128, May.
    17. Shlomo Halfin & Ward Whitt, 1981. "Heavy-Traffic Limits for Queues with Many Exponential Servers," Operations Research, INFORMS, vol. 29(3), pages 567-588, June.
    18. John Asker & Chaim Fershtman & Ariel Pakes, 2022. "Artificial Intelligence, Algorithm Design, and Pricing," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 452-456, May.
    19. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    20. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pranjal Rawat, 2023. "Designing Auctions when Algorithms Learn to Bid: The critical role of Payment Rules," Papers 2306.09437, arXiv.org.
    2. Eshwar Ram Arunachaleswaran & Natalie Collina & Sampath Kannan & Aaron Roth & Juba Ziani, 2024. "Algorithmic Collusion Without Threats," Papers 2409.03956, arXiv.org, revised Dec 2024.
    3. Martino Banchio & Andrzej Skrzypacz, 2022. "Artificial Intelligence and Auction Design," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    4. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    5. Maximilian Schaefer, 2022. "On the Emergence of Cooperation in the Repeated Prisoner's Dilemma," Papers 2211.15331, arXiv.org, revised Feb 2023.
    6. Olivier Compte, 2023. "Q-learning with biased policy rules," Papers 2304.12647, arXiv.org, revised Oct 2023.
    7. Ludovico Crippa & Yonatan Gur & Bar Light, 2022. "Equilibria in Repeated Games under No-Regret with Dynamic Benchmarks," Papers 2212.03152, arXiv.org, revised Jul 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martino Banchio & Andrzej Skrzypacz, 2022. "Artificial Intelligence and Auction Design," Papers 2202.05947, arXiv.org.
    2. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    3. Martino Banchio & Andrzej Skrzypacz, 2022. "Artificial Intelligence and Auction Design," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    4. Jacques Durieu & Philippe Solal, 2012. "Models of Adaptive Learning in Game Theory," Chapters, in: Richard Arena & Agnès Festré & Nathalie Lazaric (ed.), Handbook of Knowledge and Economics, chapter 11, Edward Elgar Publishing.
    5. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    6. Ed Hopkins & Robert M. Seymour, 2002. "The Stability of Price Dispersion under Seller and Consumer Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(4), pages 1157-1190, November.
    7. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    8. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    9. Qian Qi, 2023. "Artificial Intelligence and Dual Contract," Papers 2303.12350, arXiv.org, revised Jun 2024.
    10. Pangallo, Marco & Sanders, James B.T. & Galla, Tobias & Farmer, J. Doyne, 2022. "Towards a taxonomy of learning dynamics in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 1-21.
    11. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    12. George R. Neumann & Nathan E. Savin, 2000. "Learning and Communication in Sender-Receiver Games: An Econometric Investigation," Econometric Society World Congress 2000 Contributed Papers 1852, Econometric Society.
    13. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    14. Mengel, Friederike & Orlandi, Ludovica & Weidenholzer, Simon, 2022. "Match length realization and cooperation in indefinitely repeated games," Journal of Economic Theory, Elsevier, vol. 200(C).
    15. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    16. Tassos Patokos, 2014. "Introducing Disappointment Dynamics and Comparing Behaviors in Evolutionary Games: Some Simulation Results," Games, MDPI, vol. 5(1), pages 1-25, January.
    17. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    18. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    19. Dolgopolov, Arthur, 2024. "Reinforcement learning in a prisoner's dilemma," Games and Economic Behavior, Elsevier, vol. 144(C), pages 84-103.
    20. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.05946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.