IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.16659.html
   My bibliography  Save this paper

Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics

Author

Listed:
  • Yuling Max Chen
  • Bin Li
  • David Saunders

Abstract

Considering the continuous-time Mean-Variance (MV) portfolio optimization problem, we study a regime-switching market setting and apply reinforcement learning (RL) techniques to assist informed exploration within the control space. We introduce and solve the Exploratory Mean Variance with Regime Switching (EMVRS) problem. We also present a Policy Improvement Theorem. Further, we recognize that the widely applied Temporal Difference (TD) learning is not adequate for the EMVRS context, hence we consider Orthogonality Condition (OC) learning, leveraging the martingale property of the induced optimal value function from the analytical solution to EMVRS. We design a RL algorithm that has more meaningful parameterization using the market parameters and propose an updating scheme for each parameter. Our empirical results demonstrate the superiority of OC learning over TD learning with a clear convergence of the market parameters towards their corresponding ``grounding true" values in a simulated market scenario. In a real market data study, EMVRS with OC learning outperforms its counterparts with the highest mean and reasonably low volatility of the annualized portfolio returns.

Suggested Citation

  • Yuling Max Chen & Bin Li & David Saunders, 2025. "Exploratory Mean-Variance Portfolio Optimization with Regime-Switching Market Dynamics," Papers 2501.16659, arXiv.org.
  • Handle: RePEc:arx:papers:2501.16659
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.16659
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.16659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.