IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.09825.html
   My bibliography  Save this paper

Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions

Author

Listed:
  • Chengwang Liao
  • Ziwei Mei
  • Zhentao Shi

Abstract

In panel predictive regressions with persistent covariates, coexistence of the Nickell bias and the Stambaugh bias imposes challenges for hypothesis testing. This paper introduces a new estimator, the IVX-X-Jackknife (IVXJ), which effectively removes this composite bias and reinstates standard inferential procedures. The IVXJ estimator is inspired by the IVX technique in time series. In panel data where the cross section is of the same order as the time dimension, the bias of the baseline panel IVX estimator can be corrected via an analytical formula by leveraging an innovative X-Jackknife scheme that divides the time dimension into the odd and even indices. IVXJ is the first procedure that achieves unified inference across a wide range of modes of persistence in panel predictive regressions, whereas such unified inference is unattainable for the popular within-group estimator. Extended to accommodate long-horizon predictions with multiple regressions, IVXJ is used to examine the impact of debt levels on financial crises by panel local projection. Our empirics provide comparable results across different categories of debt.

Suggested Citation

  • Chengwang Liao & Ziwei Mei & Zhentao Shi, 2024. "Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions," Papers 2410.09825, arXiv.org.
  • Handle: RePEc:arx:papers:2410.09825
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.09825
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    2. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    4. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    5. Erik Hjalmarsson & Tamas Kiss, 2022. "Long‐run predictability tests are even worse than you thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1334-1355, November.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    8. Hjalmarsson, Erik, 2010. "Predicting Global Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(1), pages 49-80, February.
    9. Greenaway-McGrevy, Ryan & Han, Chirok & Sul, Donggyu, 2012. "Asymptotic distribution of factor augmented estimators for panel regression," Journal of Econometrics, Elsevier, vol. 169(1), pages 48-53.
    10. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    11. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    12. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    13. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2011. "Uniform Asymptotic Normality In Stationary And Unit Root Autoregression," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1117-1151, December.
    14. Carmen M. Reinhart & Kenneth S. Rogoff, 2010. "Growth in a Time of Debt," American Economic Review, American Economic Association, vol. 100(2), pages 573-578, May.
    15. Reinhart, Karmen & Rogoff, Kenneth, 2009. ""This time is different": panorama of eight centuries of financial crises," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 77-114, March.
    16. Regis Barnichon & Christian Brownlees, 2019. "Impulse Response Estimation by Smooth Local Projections," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 522-530, July.
    17. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    18. Magdalinos, Tassos & Phillips, Peter C.B., 2009. "Limit Theory For Cointegrated Systems With Moderately Integrated And Moderately Explosive Regressors," Econometric Theory, Cambridge University Press, vol. 25(2), pages 482-526, April.
    19. Matthew Baron & Emil Verner & Wei Xiong, 2021. "Banking Crises Without Panics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(1), pages 51-113.
    20. Atif Mian & Amir Sufi, 2018. "Finance and Business Cycles: The Credit-Driven Household Demand Channel," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 31-58, Summer.
    21. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    22. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    23. Carmen M. Reinhart & Kenneth S. Rogoff, 2014. "This Time is Different: A Panoramic View of Eight Centuries of Financial Crises," Annals of Economics and Finance, Society for AEF, vol. 15(2), pages 215-268, November.
    24. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    25. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    26. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    27. Peter C. B. Phillips, 2015. "Halbert White Jr. Memorial JFEC Lecture: Pitfalls and Possibilities in Predictive Regression†," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 521-555.
    28. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    29. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    30. Hjalmarsson, Erik, 2008. "The Stambaugh bias in panel predictive regressions," Finance Research Letters, Elsevier, vol. 5(1), pages 47-58, March.
    31. Okui, Ryo, 2010. "Asymptotically Unbiased Estimation Of Autocovariances And Autocorrelations With Long Panel Data," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1263-1304, October.
    32. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    33. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2014. "X-Differencing And Dynamic Panel Model Estimation," Econometric Theory, Cambridge University Press, vol. 30(1), pages 201-251, February.
    34. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    35. Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
    36. Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
    37. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    38. Christina D. Romer & David H. Romer, 2017. "New Evidence on the Aftermath of Financial Crises in Advanced Countries," American Economic Review, American Economic Association, vol. 107(10), pages 3072-3118, October.
    39. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    40. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    41. Ziwei Mei & Liugang Sheng & Zhentao Shi, 2023. "Nickell Bias in Panel Local Projection: Financial Crises Are Worse Than You Think," Papers 2302.13455, arXiv.org, revised Oct 2023.
    42. Joakim Westerlund & Hande Karabiyik & Paresh Narayan, 2017. "Testing for Predictability in panels with General Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 554-574, April.
    43. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    44. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    45. Herbst, Edward P. & Johannsen, Benjamin K., 2024. "Bias in local projections," Journal of Econometrics, Elsevier, vol. 240(1).
    46. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    47. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwei Mei & Liugang Sheng & Zhentao Shi, 2023. "Nickell Bias in Panel Local Projection: Financial Crises Are Worse Than You Think," Papers 2302.13455, arXiv.org, revised Oct 2023.
    2. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    3. Zhan Gao & Ji Hyung Lee & Ziwei Mei & Zhentao Shi, 2024. "Econometric Inference for High Dimensional Predictive Regressions," Papers 2409.10030, arXiv.org, revised Nov 2024.
    4. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    5. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    6. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    7. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    8. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    9. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    10. Lamia Bazzaoui & Jun Nagayasu, 2021. "Is Inflation Fiscally Determined?," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    11. Luca Agnello & Ricardo M. Sousa, 2014. "The Determinants of the Volatility of Fiscal Policy Discretion," Fiscal Studies, Institute for Fiscal Studies, vol. 35, pages 91-115, March.
    12. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    13. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
    14. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    15. Osvaldo Lagares, 2016. "Capital, Economic Growth and Relative Income Differences in Latin America," Discussion Papers 16/03, Department of Economics, University of York.
    16. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    17. İbrahim Yarba & Z. Nuray Güner, 2020. "Leverage dynamics: Do financial development and government leverage matter? Evidence from a major developing economy," Empirical Economics, Springer, vol. 59(5), pages 2473-2507, November.
    18. Ivan Fernandez-Val & Martin Weidner, 2013. "Individual and time effects in nonlinear panel models with large N, T," CeMMAP working papers 60/13, Institute for Fiscal Studies.
    19. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    20. Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.09825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.