IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1747.html
   My bibliography  Save this paper

X-Differencing and Dynamic Panel Model Estimation

Author

Listed:

Abstract

This paper introduces a new estimation method for dynamic panel models with fixed effects and AR(p) idiosyncratic errors. The proposed estimator uses a novel form of systematic differencing, called X-differencing, that eliminates fixed effects and retains information and signal strength in cases where there is a root at or near unity. The resulting "panel fully aggregated" estimator (PFAE) is obtained by pooled least squares on the system of X-differenced equations. The method is simple to implement, free from bias for all parameter values, including unit root cases, and has strong asymptotic and finite sample performance characteristics that dominate other procedures, such as bias corrected least squares, GMM and system GMM methods. The asymptotic theory holds as long as the cross section (n) or time series (T) sample size is large, regardless of the n/T ratio, which makes the approach appealing for practical work. In the time series AR(1) case (n = 1), the FAE estimator has a limit distribution with smaller bias and variance than the maximum likelihood estimator (MLE) when the autoregressive coefficient is at or near unity and the same limit distribution as the MLE in the stationary case, so the advantages of the approach continue to hold for fixed and even small n. For panel data modeling purposes, a general-to-specific selection rule is suggested for choosing the lag parameter p and the procedure works in a standard manner, aiding practical implementation. The PFAE estimation method is also applicable to dynamic panel models with exogenous regressors. Some simulation results are reported giving comparisons with other dynamic panel estimation methods.

Suggested Citation

  • Chirok Han & Peter C.B. Phillips & Donggyu Sul, 2010. "X-Differencing and Dynamic Panel Model Estimation," Cowles Foundation Discussion Papers 1747, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1747
    Note: CFP 1406
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d17/d1747.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    2. Jean Imbs & Haroon Mumtaz & Morten O. Ravn & Hélène Rey, 2005. "PPP Strikes Back: Aggregation And the Real Exchange Rate," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 1-43.
    3. Gabor Kezdi, 2005. "Robus Standard Error Estimation in Fixed-Effects Panel Models," Econometrics 0508018, University Library of Munich, Germany.
    4. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    5. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    6. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    7. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    8. A. Bhargava & L. Franzini & W. Narendranathan, 2006. "Serial Correlation and the Fixed Effects Model," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 4, pages 61-77, World Scientific Publishing Co. Pte. Ltd..
    9. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    10. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    11. Kazuhiko Hayakawa, 2007. "A Simple Efficient Instrumental Variable Estimator in Panel AR(p) Models," Hi-Stat Discussion Paper Series d07-213, Institute of Economic Research, Hitotsubashi University.
    12. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    13. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    14. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 26-29, January.
    15. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    16. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    17. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    18. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    19. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    20. Phillips, Peter C.B. & Han, Chirok, 2008. "Gaussian Inference In Ar(1) Time Series With Or Without A Unit Root," Econometric Theory, Cambridge University Press, vol. 24(3), pages 631-650, June.
    21. Han, Chirok & Phillips, Peter C. B., 2010. "Gmm Estimation For Dynamic Panels With Fixed Effects And Strong Instruments At Unity," Econometric Theory, Cambridge University Press, vol. 26(1), pages 119-151, February.
    22. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    23. Qian, Hailong & Schmidt, Peter, 2003. "Partial GLS regression," Economics Letters, Elsevier, vol. 79(3), pages 385-392, June.
    24. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    25. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    26. Kruiniger, Hugo, 2008. "Maximum likelihood estimation and inference methods for the covariance stationary panel AR(1)/unit root model," Journal of Econometrics, Elsevier, vol. 144(2), pages 447-464, June.
    27. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    28. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    29. Kiefer, Nicholas M., 1980. "Estimation of fixed effect models for time series of cross-sections with arbitrary intertemporal covariance," Journal of Econometrics, Elsevier, vol. 14(2), pages 195-202, October.
    30. Phillips, Peter C.B. & Magdalinos, Tassos, 2009. "Unit Root And Cointegrating Limit Theory When Initialization Is In The Infinite Past," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1682-1715, December.
    31. Orcutt, Guy H & Winokur, Herbert S, Jr, 1969. "First Order Autoregression: Inference, Estimation, and Prediction," Econometrica, Econometric Society, vol. 37(1), pages 1-14, January.
    32. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 1-9, January.
    33. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    34. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    35. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Charemza & Svetlana Makarova & Krzysztof Rybiński, 2023. "Anti-pandemic restrictions, uncertainty and sentiment in seven countries," Economic Change and Restructuring, Springer, vol. 56(1), pages 1-27, February.
    2. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    3. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    4. Chengwang Liao & Ziwei Mei & Zhentao Shi, 2024. "Nickell Meets Stambaugh: A Tale of Two Biases in Panel Predictive Regressions," Papers 2410.09825, arXiv.org.
    5. Md. Qamruzzaman & Jianguo Wei, 2019. "Financial Innovation and Financial Inclusion Nexus in South Asian Countries: Evidence from Symmetric and Asymmetric Panel Investigation," IJFS, MDPI, vol. 7(4), pages 1-27, October.
    6. Kruiniger, Hugo, 2018. "A further look at Modified ML estimation of the panel AR(1) model with fixed effects and arbitrary initial conditions," MPRA Paper 110375, University Library of Munich, Germany, revised 15 Aug 2021.
    7. Oliver Bischoff & Achim Buchwald, 2018. "Horizontal and Vertical Firm Networks, Corporate Performance and Product Market Competition," Journal of Industry, Competition and Trade, Springer, vol. 18(1), pages 25-45, March.
    8. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    9. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    10. Dhaene, Geert & Zhu, Yu, 2017. "Median-based estimation of dynamic panel models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 398-423.
    11. Devdatta Ray & Mikael Linden, 2020. "Health expenditure, longevity, and child mortality: dynamic panel data approach with global data," International Journal of Health Economics and Management, Springer, vol. 20(1), pages 99-119, March.
    12. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    13. Chihwa Kao & Long Liu & Rui Sun, 2021. "A bias-corrected fixed effects estimator in the dynamic panel data model," Empirical Economics, Springer, vol. 60(1), pages 205-225, January.
    14. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    15. Jin, Sensen & Deng, Feng, 2024. "Impact of public environmental concern on urban-rural economic income inequality," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1131-1143.
    16. Jhih-Gang Chen & Biing-Shen Kuo, 2013. "Gaussian inference in general AR(1) models based on difference," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 447-453, July.
    17. P. Čížek & M. Aquaro, 2018. "Robust estimation and moment selection in dynamic fixed-effects panel data models," Computational Statistics, Springer, vol. 33(2), pages 675-708, June.
    18. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    19. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    20. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Other publications TiSEM 9bf2c16c-522f-4223-8037-c, Tilburg University, School of Economics and Management.
    21. Ding, Long & Liu, Peng & Hu, Sen, 2023. "Geo-Fencing or Geo-Conquesting? a strategic analysis of Location-Based coupon under different market structures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    22. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    23. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    24. Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
    25. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    2. Badi H. Baltagi, 2021. "Dynamic Panel Data Models," Springer Texts in Business and Economics, in: Econometric Analysis of Panel Data, edition 6, chapter 0, pages 187-228, Springer.
    3. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    4. Mayer, Alexander, 2022. "On the local power of some tests of strict exogeneity in linear fixed effects models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 49-74.
    5. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    6. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    7. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    8. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    9. Joakim Westerlund & Jörg Breitung, 2013. "Lessons from a Decade of IPS and LLC," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 547-591, August.
    10. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    11. Okui, Ryo, 2009. "The optimal choice of moments in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 151(1), pages 1-16, July.
    12. Jan F. Kiviet & Milan Pleus & Rutger Poldermans, 2014. "Accuracy and efficiency of various GMM inference techniques in dynamic micro panel data models," UvA-Econometrics Working Papers 14-09, Universiteit van Amsterdam, Dept. of Econometrics.
    13. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    14. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    15. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    16. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    17. Zhenlin Yang, 2014. "Initial-Condition Free Estimation of Fixed Effects Dynamic Panel Data Models," Working Papers 16-2014, Singapore Management University, School of Economics.
    18. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    19. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    20. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.

    More about this item

    Keywords

    GMM; Panel full aggregation; Stacked and pooled least squares; Panel unit root; X-Differencing;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.