IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.20033.html
   My bibliography  Save this paper

Fuel tax loss in a world of electric mobility: A window of opportunity for congestion pricing

Author

Listed:
  • Thi Ngoc Nguyen
  • Felix Muesgens

Abstract

The continued transition towards electric mobility will decrease energy tax revenues worldwide, which has substantial implications for government funds. At the same time, demand for transportation is ever increasing, which in turn increases congestion problems. Combining both challenges, this paper assesses the effectiveness of congestion pricing as a sustainable revenue stream to offset fuel tax loss in 2030 while simultaneously enhancing efficiency in the transport sector. A congestion-based toll that is road-and-time-variant is simulated for the greater Berlin area in Germany using the multi-agent transport simulation (MATSim) software. Through the simulation results, this paper quantifies the impacts of the toll on the governmental revenue, traffic management, environment, social welfare, and the distribution effects. We find that the revenue from congestion tolls in a metropolitan area can compensate the reduction in passenger car fuel tax. Furthermore, a remarkable welfare surplus is observed. The toll also successfully incentivises transport users to adjust their travel behaviour, which reduces traffic delay time by 28%. CO2 emissions as a key metric for decarbonisation of the transport sector decrease by more than 5%. The analysis of the distribution effects suggests that a redistribution plan with a focus on the middle-low-income residents and the outer boroughs could help the policy gain more public acceptance.

Suggested Citation

  • Thi Ngoc Nguyen & Felix Muesgens, 2024. "Fuel tax loss in a world of electric mobility: A window of opportunity for congestion pricing," Papers 2409.20033, arXiv.org.
  • Handle: RePEc:arx:papers:2409.20033
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.20033
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.20033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.