IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.07318.html
   My bibliography  Save this paper

Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation

Author

Listed:
  • Peiyu Jing
  • Ravi Seshadri
  • Takanori Sakai
  • Ali Shamshiripour
  • Andre Romano Alho
  • Antonios Lentzakis
  • Moshe E. Ben-Akiva

Abstract

The distributional impacts of congestion pricing have been widely studied in the literature and the evidence on this is mixed. Some studies find that pricing is regressive whereas others suggest that it can be progressive or neutral depending on the specific spatial characteristics of the urban region, existing activity and travel patterns, and the design of the pricing scheme. Moreover, the welfare and distributional impacts of pricing have largely been studied in the context of passenger travel whereas freight has received relatively less attention. In this paper, we examine the impacts of several third-best congestion pricing schemes on both passenger transport and freight in an integrated manner using a large-scale microsimulator (SimMobility) that explicitly simulates the behavioral decisions of the entire population of individuals and business establishments, dynamic multimodal network performance, and their interactions. Through simulations of a prototypical North American city, we find that a distance-based pricing scheme yields the largest welfare gains, although the gains are a modest fraction of toll revenues (around 30\%). In the absence of revenue recycling or redistribution, distance-based and cordon-based schemes are found to be particularly regressive. On average, lower income individuals lose as a result of the scheme, whereas higher income individuals gain. A similar trend is observed in the context of shippers -- small establishments having lower shipment values lose on average whereas larger establishments with higher shipment values gain. We perform a detailed spatial analysis of distributional outcomes, and examine the impacts on network performance, activity generation, mode and departure time choices, and logistics operations.

Suggested Citation

  • Peiyu Jing & Ravi Seshadri & Takanori Sakai & Ali Shamshiripour & Andre Romano Alho & Antonios Lentzakis & Moshe E. Ben-Akiva, 2023. "Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation," Papers 2305.07318, arXiv.org.
  • Handle: RePEc:arx:papers:2305.07318
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.07318
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Börjesson, Maria & Kristoffersson, Ida, 2018. "The Swedish congestion charges: Ten years on," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 35-51.
    2. Eliasson, Jonas, 2016. "Is congestion pricing fair? Consumer and citizen perspectives on equity effects," Transport Policy, Elsevier, vol. 52(C), pages 1-15.
    3. Verhoef, Erik T., 2002. "Second-best congestion pricing in general static transportation networks with elastic demands," Regional Science and Urban Economics, Elsevier, vol. 32(3), pages 281-310, May.
    4. Eliasson, Jonas & Hultkrantz, Lars & Nerhagen, Lena & Rosqvist, Lena Smidfelt, 2009. "The Stockholm congestion - charging trial 2006: Overview of effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(3), pages 240-250, March.
    5. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    6. King, David & Manville, Michael & Shoup, Donald, 2007. "The political calculus of congestion pricing," University of California Transportation Center, Working Papers qt9js9z8gz, University of California Transportation Center.
    7. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    8. Amaya Vega & Aisling Reynolds-Feighan, 2008. "Employment Sub-centres and Travel-to-Work Mode Choice in the Dublin Region," Urban Studies, Urban Studies Journal Limited, vol. 45(9), pages 1747-1768, August.
    9. Zhang, Xiaoning & Yang, Hai, 2004. "The optimal cordon-based network congestion pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 517-537, July.
    10. Lehe, Lewis J., 2017. "Downtown tolls and the distribution of trip lengths," Economics of Transportation, Elsevier, vol. 11, pages 23-32.
    11. Kaddoura, Ihab & Nagel, Kai, 2019. "Congestion pricing in a real-world oriented agent-based simulation context," Research in Transportation Economics, Elsevier, vol. 74(C), pages 40-51.
    12. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    13. Chen, Daqiang & Ignatius, Joshua & Sun, Danzhi & Goh, Mark & Zhan, Shalei, 2018. "Impact of congestion pricing schemes on emissions and temporal shift of freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 77-105.
    14. Lehe, Lewis J., 2020. "Winners and losers from road pricing with heterogeneous travelers and a mixed-traffic bus alternative," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 432-446.
    15. Bhat, Chandra R., 1998. "Analysis of travel mode and departure time choice for urban shopping trips," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 361-371, August.
    16. Oke, Jimi B. & Akkinepally, Arun Prakash & Chen, Siyu & Xie, Yifei & Aboutaleb, Youssef M. & Azevedo, Carlos Lima & Zegras, P. Christopher & Ferreira, Joseph & Ben-Akiva, Moshe, 2020. "Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 98-126.
    17. de Palma, André & Proost, Stef & Seshadri, Ravi & Ben-Akiva, Moshe, 2018. "Congestion tolling - dollars versus tokens: A comparative analysis," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 261-280.
    18. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    19. Verhoef, Erik & Nijkamp, Peter & Rietveld, Piet, 1996. "Second-Best Congestion Pricing: The Case of an Untolled Alternative," Journal of Urban Economics, Elsevier, vol. 40(3), pages 279-302, November.
    20. Yang, Hai & Huang, Hai-Jun, 1998. "Principle of marginal-cost pricing: how does it work in a general road network?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 45-54, January.
    21. Eliasson, Jonas & Mattsson, Lars-Göran, 2006. "Equity effects of congestion pricing: Quantitative methodology and a case study for Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 602-620, August.
    22. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    23. Hai Yang, 1999. "System Optimum, Stochastic User Equilibrium, and Optimal Link Tolls," Transportation Science, INFORMS, vol. 33(4), pages 354-360, November.
    24. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    25. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?," Journal of Public Economics, Elsevier, vol. 95(7), pages 983-992.
    26. Chandra R. Bhat, 2000. "Incorporating Observed and Unobserved Heterogeneity in Urban Work Travel Mode Choice Modeling," Transportation Science, INFORMS, vol. 34(2), pages 228-238, May.
    27. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    28. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    29. Takanori Sakai & Yusuke Hara & Ravi Seshadri & André Romano Alho & Md Sami Hasnine & Peiyu Jing & ZhiYuan Chua & Moshe Ben-Akiva, 2022. "Household-based E-commerce demand modeling for an agent-based urban transportation simulation platform," Transportation Planning and Technology, Taylor & Francis Journals, vol. 45(2), pages 179-201, February.
    30. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    31. King, David & Manville, Michael & Shoup, Donald, 2007. "The political calculus of congestion pricing," Transport Policy, Elsevier, vol. 14(2), pages 111-123, March.
    32. Georgina Santos & Laurent Rojey, 2004. "Distributional impacts of road pricing: The truth behind the myth," Transportation, Springer, vol. 31(1), pages 21-42, February.
    33. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Renming & Jiang, Yu & Seshadri, Ravi & Ben-Akiva, Moshe & Azevedo, Carlos Lima, 2024. "Contextual Bayesian optimization of congestion pricing with day-to-day dynamics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koster, Paul & Verhoef, Erik & Shepherd, Simon & Watling, David, 2018. "Preference heterogeneity and congestion pricing: The two route case revisited," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 137-157.
    2. Kristoffersson, Ida & Engelson, Leonid & Börjesson, Maria, 2017. "Efficiency vs equity: Conflicting objectives of congestion charges," Transport Policy, Elsevier, vol. 60(C), pages 99-107.
    3. de Palma, André & Kilani, Moez & Lindsey, Robin, 2005. "Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 588-611.
    4. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    5. Paul Koster & Erik T. Verhoef & Simon Shepherd & David Watling, 2014. "Probabilistic Choice and Congestion Pricing with Heterogeneous Travellers and Price-Sensitive Demand," Tinbergen Institute Discussion Papers 14-078/VIII, Tinbergen Institute, revised 13 Nov 2014.
    6. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    7. Fu, Xinying & van den Berg, Vincent A.C. & Verhoef, Erik T., 2018. "Private road supply in networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 430-443.
    8. Kristoffersson, Ida & Engelson, Leonid, 2016. "Efficiency and equity of congestion charges," Working papers in Transport Economics 2016:7, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    9. Georgina Santos & Erik Verhoef, 2011. "Road Congestion Pricing," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 23, Edward Elgar Publishing.
    10. Börjesson, Maria & Kristoffersson, Ida, 2018. "The Swedish congestion charges: Ten years on," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 35-51.
    11. Li, Xun & Rey, David & Dixit, Vinayak V., 2018. "An axiomatic characterization of fairness in transport networks: Application to road pricing and spatial equity," Transport Policy, Elsevier, vol. 68(C), pages 142-157.
    12. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    13. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    14. Jens West & Maria Börjesson, 2020. "The Gothenburg congestion charges: cost–benefit analysis and distribution effects," Transportation, Springer, vol. 47(1), pages 145-174, February.
    15. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    16. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    17. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T., 2019. "Carpooling with heterogeneous users in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 178-200.
    18. van den Berg, Vincent A.C., 2012. "Step-tolling with price-sensitive demand: Why more steps in the toll make the consumer better off," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1608-1622.
    19. Wu, Jiyan & Tian, Ye & Sun, Jian & Michael Zhang, H. & Wang, Yunpeng, 2023. "Public or private? Optimal organization for incentive-based travel demand management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    20. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.07318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.