IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.14380.html
   My bibliography  Save this paper

Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach

Author

Listed:
  • Ruohan Zhan
  • Shichao Han
  • Yuchen Hu
  • Zhenling Jiang

Abstract

Recommender systems are essential for content-sharing platforms by curating personalized content. To evaluate updates to recommender systems targeting content creators, platforms frequently rely on creator-side randomized experiments. The treatment effect measures the change in outcomes when a new algorithm is implemented compared to the status quo. We show that the standard difference-in-means estimator can lead to biased estimates due to recommender interference that arises when treated and control creators compete for exposure. We propose a "recommender choice model" that describes which item gets exposed from a pool containing both treated and control items. By combining a structural choice model with neural networks, this framework directly models the interference pathway while accounting for rich viewer-content heterogeneity. We construct a debiased estimator of the treatment effect and prove it is $\sqrt n$-consistent and asymptotically normal with potentially correlated samples. We validate our estimator's empirical performance with a field experiment on Weixin short-video platform. In addition to the standard creator-side experiment, we conduct a costly double-sided randomization design to obtain a benchmark estimate free from interference bias. We show that the proposed estimator yields results comparable to the benchmark, whereas the standard difference-in-means estimator can exhibit significant bias and even produce reversed signs.

Suggested Citation

  • Ruohan Zhan & Shichao Han & Yuchen Hu & Zhenling Jiang, 2024. "Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach," Papers 2406.14380, arXiv.org, revised Jul 2024.
  • Handle: RePEc:arx:papers:2406.14380
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.14380
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramesh Johari & Hannah Li & Inessa Liskovich & Gabriel Y. Weintraub, 2022. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Management Science, INFORMS, vol. 68(10), pages 7069-7089, October.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
    4. Patrick Bajari & Brian Burdick & Guido W. Imbens & Lorenzo Masoero & James McQueen & Thomas Richardson & Ido M. Rosen, 2021. "Multiple Randomization Designs," Papers 2112.13495, arXiv.org.
    5. Vivek F. Farias & Andrew A. Li & Tianyi Peng & Andrew Zheng, 2022. "Markovian Interference in Experiments," Papers 2206.02371, arXiv.org, revised Jun 2022.
    6. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    7. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    8. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    9. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    10. Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," Papers 1905.10116, arXiv.org, revised Jul 2019.
    11. Zikun Ye & Dennis J. Zhang & Heng Zhang & Renyu Zhang & Xin Chen & Zhiwei Xu, 2023. "Cold Start to Improve Market Thickness on Online Advertising Platforms: Data-Driven Algorithms and Field Experiments," Management Science, INFORMS, vol. 69(7), pages 3838-3860, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Brocco & Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org, revised Dec 2024.
    3. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    4. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    5. Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Experimenting on Markov Decision Processes with Local Treatments," Papers 2407.19618, arXiv.org, revised Oct 2024.
    6. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    7. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
    8. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    9. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    10. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    11. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    12. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    13. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    14. Ozan Candogan & Chen Chen & Rad Niazadeh, 2024. "Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization," Management Science, INFORMS, vol. 70(6), pages 4069-4086, June.
    15. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    16. Alberto Caron & Gianluca Baio & Ioanna Manolopoulou, 2022. "Estimating individual treatment effects using nonā€parametric regression models: A review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1115-1149, July.
    17. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    18. Li, Ting & Shi, Chengchun & Wen, Qianglin & Sui, Yang & Qin, Yongli & Lai, Chunbo & Zhu, Hongtu, 2024. "Combining experimental and historical data for policy evaluation," LSE Research Online Documents on Economics 125588, London School of Economics and Political Science, LSE Library.
    19. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    20. Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.14380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.