IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.15522.html
   My bibliography  Save this paper

Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions

Author

Listed:
  • Luofeng Liao
  • Christian Kroer

Abstract

We initiate the study of statistical inference and A/B testing for two market equilibrium models: linear Fisher market (LFM) equilibrium and first-price pacing equilibrium (FPPE). LFM arises from fair resource allocation systems such as allocation of food to food banks and notification opportunities to different types of notifications. For LFM, we assume that the data observed is captured by the classical finite-dimensional Fisher market equilibrium, and its steady-state behavior is modeled by a continuous limit Fisher market. The second type of equilibrium we study, FPPE, arises from internet advertising where advertisers are constrained by budgets and advertising opportunities are sold via first-price auctions. For platforms that use pacing-based methods to smooth out the spending of advertisers, FPPE provides a hindsight-optimal configuration of the pacing method. We propose a statistical framework for the FPPE model, in which a continuous limit FPPE models the steady-state behavior of the auction platform, and a finite FPPE provides the data to estimate primitives of the limit FPPE. Both LFM and FPPE have an Eisenberg-Gale convex program characterization, the pillar upon which we derive our statistical theory. We start by deriving basic convergence results for the finite market to the limit market. We then derive asymptotic distributions, and construct confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of estimation based on finite markets. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Synthetic and semi-synthetic experiments verify the validity and practicality of our theory.

Suggested Citation

  • Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2406.15522
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.15522
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramesh Johari & Hannah Li & Inessa Liskovich & Gabriel Y. Weintraub, 2022. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Management Science, INFORMS, vol. 68(10), pages 7069-7089, October.
    2. E. Eisenberg, 1961. "Aggregation of Utility Functions," Management Science, INFORMS, vol. 7(4), pages 337-350, July.
    3. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    4. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    5. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    6. Iavor Bojinov & Neil Shephard, 2019. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1665-1682, October.
    7. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    8. Yuchen Hu & Shuangning Li & Stefan Wager, 2022. "Average direct and indirect causal effects under interference [Estimating average causal effects under general interference, with application to a social network experiment]," Biometrika, Biometrika Trust, vol. 109(4), pages 1165-1172.
    9. Alexander Shapiro, 1993. "Asymptotic Behavior of Optimal Solutions in Stochastic Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 829-845, November.
    10. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    11. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    12. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    13. Varian, Hal R., 1974. "Equity, envy, and efficiency," Journal of Economic Theory, Elsevier, vol. 9(1), pages 63-91, September.
    14. Santiago R. Balseiro & Omar Besbes & Gabriel Y. Weintraub, 2015. "Repeated Auctions with Budgets in Ad Exchanges: Approximations and Design," Management Science, INFORMS, vol. 61(4), pages 864-884, April.
    15. Santiago Balseiro & Anthony Kim & Mohammad Mahdian & Vahab Mirrokni, 2021. "Budget-Management Strategies in Repeated Auctions," Operations Research, INFORMS, vol. 69(3), pages 859-876, May.
    16. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    17. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    18. Luofeng Liao & Christian Kroer, 2024. "Bootstrapping Fisher Market Equilibrium and First-Price Pacing Equilibrium," Papers 2402.02303, arXiv.org, revised Feb 2024.
    19. Roshni Sahoo & Stefan Wager, 2022. "Policy Learning with Competing Agents," Papers 2204.01884, arXiv.org, revised Apr 2024.
    20. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    21. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    22. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, November.
    23. Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
    24. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    25. Santiago R. Balseiro & Yonatan Gur, 2019. "Learning in Repeated Auctions with Budgets: Regret Minimization and Equilibrium," Management Science, INFORMS, vol. 65(9), pages 3952-3968, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    2. Luofeng Liao & Yuan Gao & Christian Kroer, 2022. "Statistical Inference for Fisher Market Equilibrium," Papers 2209.15422, arXiv.org.
    3. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    5. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    6. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    7. Yuan Gao & Christian Kroer & Alex Peysakhovich, 2021. "Online Market Equilibrium with Application to Fair Division," Papers 2103.12936, arXiv.org, revised Oct 2021.
    8. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    9. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    10. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    11. Cyrus Samii & Ye Wang & Jonathan Sullivan & P. M. Aronow, 2023. "Inference in Spatial Experiments with Interference using the SpatialEffect Package," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 138-156, March.
    12. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    13. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    14. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    15. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    16. Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
    17. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    18. Ruohan Zhan & Shichao Han & Yuchen Hu & Zhenling Jiang, 2024. "Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach," Papers 2406.14380, arXiv.org, revised Jul 2024.
    19. Brück, Florian & Fermanian, Jean-David & Min, Aleksey, 2023. "A corrected Clarke test for model selection and beyond," Journal of Econometrics, Elsevier, vol. 235(1), pages 105-132.
    20. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.15522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.