IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.06768.html
   My bibliography  Save this paper

Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs

Author

Listed:
  • Ruoxuan Xiong
  • Alex Chin
  • Sean J. Taylor

Abstract

We study the design and analysis of switchback experiments conducted on a single aggregate unit. The design problem is to partition the continuous time space into intervals and switch treatments between intervals, in order to minimize the estimation error of the treatment effect. We show that the estimation error depends on four factors: carryover effects, periodicity, serially correlated outcomes, and impacts from simultaneous experiments. We derive a rigorous bias-variance decomposition and show the tradeoffs of the estimation error from these factors. The decomposition provides three new insights in choosing a design: First, balancing the periodicity between treated and control intervals reduces the variance; second, switching less frequently reduces the bias from carryover effects while increasing the variance from correlated outcomes, and vice versa; third, randomizing interval start and end points reduces both bias and variance from simultaneous experiments. Combining these insights, we propose a new empirical Bayes design approach. This approach uses prior data and experiments for designing future experiments. We illustrate this approach using real data from a ride-sharing platform, yielding a design that reduces MSE by 33% compared to the status quo design used on the platform.

Suggested Citation

  • Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.
  • Handle: RePEc:arx:papers:2406.06768
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.06768
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Ramesh Johari & Hannah Li & Inessa Liskovich & Gabriel Y. Weintraub, 2022. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Management Science, INFORMS, vol. 68(10), pages 7069-7089, October.
    3. Chin Alex, 2019. "Regression Adjustments for Estimating the Global Treatment Effect in Experiments with Interference," Journal of Causal Inference, De Gruyter, vol. 7(2), pages 1-36, September.
    4. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    5. Betsy Sinclair & Margaret McConnell & Donald P. Green, 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments," American Journal of Political Science, John Wiley & Sons, vol. 56(4), pages 1055-1069, October.
    6. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    7. Guillaume Basse & Avi Feller, 2018. "Analyzing Two-Stage Experiments in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 41-55, January.
    8. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
    9. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    10. Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
    11. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    12. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    13. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    14. Chin Alex, 2019. "Regression Adjustments for Estimating the Global Treatment Effect in Experiments with Interference," Journal of Causal Inference, De Gruyter, vol. 7(2), pages 1-36, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Ozan Candogan & Chen Chen & Rad Niazadeh, 2024. "Correlated Cluster-Based Randomized Experiments: Robust Variance Minimization," Management Science, INFORMS, vol. 70(6), pages 4069-4086, June.
    3. Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.
    4. Zhichao Jiang & Kosuke Imai & Anup Malani, 2023. "Statistical inference and power analysis for direct and spillover effects in two‐stage randomized experiments," Biometrics, The International Biometric Society, vol. 79(3), pages 2370-2381, September.
    5. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    6. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    7. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    8. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    9. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    10. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    11. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    12. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    13. Jizhou Liu, 2023. "Inference for Two-stage Experiments under Covariate-Adaptive Randomization," Papers 2301.09016, arXiv.org, revised Oct 2024.
    14. Nian Si, 2023. "Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach," Papers 2310.17496, arXiv.org, revised Apr 2024.
    15. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    16. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    17. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    18. Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Experimenting on Markov Decision Processes with Local Treatments," Papers 2407.19618, arXiv.org, revised Oct 2024.
    19. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    20. Francis J. DiTraglia & Camilo Garcia-Jimeno & Rossa O'Keeffe-O'Donovan & Alejandro Sanchez-Becerra, 2020. "Identifying Causal Effects in Experiments with Spillovers and Non-compliance," Papers 2011.07051, arXiv.org, revised Jan 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.06768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.