IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.08152.html
   My bibliography  Save this paper

Estimating Effects of Long-Term Treatments

Author

Listed:
  • Shan Huang
  • Chen Wang
  • Yuan Yuan
  • Jinglong Zhao
  • Jingjing Zhang

Abstract

Estimating the effects of long-term treatments in A/B testing presents a significant challenge. Such treatments -- including updates to product functions, user interface designs, and recommendation algorithms -- are intended to remain in the system for a long period after their launches. On the other hand, given the constraints of conducting long-term experiments, practitioners often rely on short-term experimental results to make product launch decisions. It remains an open question how to accurately estimate the effects of long-term treatments using short-term experimental data. To address this question, we introduce a longitudinal surrogate framework. We show that, under standard assumptions, the effects of long-term treatments can be decomposed into a series of functions, which depend on the user attributes, the short-term intermediate metrics, and the treatment assignments. We describe the identification assumptions, the estimation strategies, and the inference technique under this framework. Empirically, we show that our approach outperforms existing solutions by leveraging two real-world experiments, each involving millions of users on WeChat, one of the world's largest social networking platforms.

Suggested Citation

  • Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Jingjing Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org.
  • Handle: RePEc:arx:papers:2308.08152
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.08152
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Raj Chetty & Guido W. Imbens & Hyunseung Kang, 2019. "The Surrogate Index: Combining Short-Term Proxies to Estimate Long-Term Treatment Effects More Rapidly and Precisely," NBER Working Papers 26463, National Bureau of Economic Research, Inc.
    2. Ron Berman & Christophe Van den Bulte, 2022. "False Discovery in A/B Testing," Management Science, INFORMS, vol. 68(9), pages 6762-6782, September.
    3. Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
    4. Athey, Susan & Imbens, Guido W. & Bayati, Mohsen, 2019. "Optimal Experimental Design for Staggered Rollouts," Research Papers 3837, Stanford University, Graduate School of Business.
    5. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2021. "Matrix Completion Methods for Causal Panel Data Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1716-1730, October.
    6. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    7. Ramesh Johari & Hannah Li & Inessa Liskovich & Gabriel Y. Weintraub, 2022. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Management Science, INFORMS, vol. 68(10), pages 7069-7089, October.
    8. Guido Imbens & Nathan Kallus & Xiaojie Mao & Yuhao Wang, 2022. "Long-term Causal Inference Under Persistent Confounding via Data Combination," Papers 2202.07234, arXiv.org, revised Aug 2024.
    9. Vivek F. Farias & Andrew A. Li & Tianyi Peng & Andrew Zheng, 2022. "Markovian Interference in Experiments," Papers 2206.02371, arXiv.org, revised Jun 2022.
    10. Ido Bright & Arthur Delarue & Ilan Lobel, 2022. "Reducing Marketplace Interference Bias Via Shadow Prices," Papers 2205.02274, arXiv.org, revised Mar 2024.
    11. Marshall M. Joffe & Tom Greene, 2009. "Related Causal Frameworks for Surrogate Outcomes," Biometrics, The International Biometric Society, vol. 65(2), pages 530-538, June.
    12. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    13. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    14. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    15. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    2. Shuze Chen & David Simchi-Levi & Chonghuan Wang, 2024. "Experimenting on Markov Decision Processes with Local Treatments," Papers 2407.19618, arXiv.org, revised Oct 2024.
    3. Ruohan Zhan & Shichao Han & Yuchen Hu & Zhenling Jiang, 2024. "Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach," Papers 2406.14380, arXiv.org, revised Jul 2024.
    4. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
    5. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
    9. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    10. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    11. Peter Bühlmann & Domagoj Ćevid, 2020. "Deconfounding and Causal Regularisation for Stability and External Validity," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 114-134, December.
    12. Retsef Levi & Elisabeth Paulson & Georgia Perakis & Emily Zhang, 2024. "Heterogeneous Treatment Effects in Panel Data," Papers 2406.05633, arXiv.org.
    13. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    14. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    15. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2023.
    16. Zeyu Diao & Lili Yue & Fanrong Zhao & Gaorong Li, 2022. "High-Dimensional Regression Adjustment Estimation for Average Treatment Effect with Highly Correlated Covariates," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    17. Christoph F. Kurz & Martin Rehm & Rolf Holle & Christina Teuner & Michael Laxy & Larissa Schwarzkopf, 2019. "The effect of bariatric surgery on health care costs: A synthetic control approach using Bayesian structural time series," Health Economics, John Wiley & Sons, Ltd., vol. 28(11), pages 1293-1307, November.
    18. Yue, Lili & Li, Gaorong & Lian, Heng & Wan, Xiang, 2019. "Regression adjustment for treatment effect with multicollinearity in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 17-35.
    19. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    20. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.08152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.