IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4753-d608656.html
   My bibliography  Save this article

Optimal Location and Sizing of Energy Storage Systems in DC-Electrified Railway Lines Using a Coral Reefs Optimization Algorithm with Substrate Layers

Author

Listed:
  • David Roch-Dupré

    (Faculty of Economics and Business Administration, Institute for Research in Technology, Comillas Pontifical University, 28049 Madrid, Spain)

  • Carlos Camacho-Gómez

    (Department of Computer Systems, Universidad Politécnica de Madrid, 28031 Madrid, Spain)

  • Asunción P. Cucala

    (Institute for Research in Technology, Comillas Pontifical University, 28049 Madrid, Spain)

  • Silvia Jiménez-Fernández

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

  • Álvaro López-López

    (Institute for Research in Technology, Comillas Pontifical University, 28049 Madrid, Spain)

  • Antonio Portilla-Figueras

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

  • Ramón R. Pecharromán

    (Institute for Research in Technology, Comillas Pontifical University, 28049 Madrid, Spain)

  • Antonio Fernández-Cardador

    (Institute for Research in Technology, Comillas Pontifical University, 28049 Madrid, Spain)

  • Sancho Salcedo-Sanz

    (Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain)

Abstract

This paper deals with the problem of finding the optimal location and sizing of Energy Storage Systems in DC-electrified railway lines. These devices increment the use of the regenerated energy produced by the trains in the braking phases, as they store the energy to later provide to the catenary the excess of regenerated energy, that otherwise would be lost in the rheostats. However, these infrastructures require a high initial investment that, in some cases, may question their profitability. We propose a multi-method ensemble meta-heuristic to obtain the optimal solution to the problem, with a high level of accuracy. Specifically, the Coral Reefs Optimization with Substrate Layers (CRO-SL) is proposed, an evolutionary-type approach able to run different search procedures within the same population. We will evaluate the performance of the CRO-SL in the problem, and we will show that it performs better than the best known existing meta-heuristics for this problem.

Suggested Citation

  • David Roch-Dupré & Carlos Camacho-Gómez & Asunción P. Cucala & Silvia Jiménez-Fernández & Álvaro López-López & Antonio Portilla-Figueras & Ramón R. Pecharromán & Antonio Fernández-Cardador & Sancho Sa, 2021. "Optimal Location and Sizing of Energy Storage Systems in DC-Electrified Railway Lines Using a Coral Reefs Optimization Algorithm with Substrate Layers," Energies, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4753-:d:608656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huan Xia & Huaixin Chen & Zhongping Yang & Fei Lin & Bin Wang, 2015. "Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-23, October.
    2. Bin Wang & Zhongping Yang & Fei Lin & Wei Zhao, 2014. "An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing," Energies, MDPI, vol. 7(10), pages 1-25, October.
    3. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Lin & Shihui Liu & Zhihong Yang & Yingying Zhao & Zhongping Yang & Hu Sun, 2016. "Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm," Energies, MDPI, vol. 9(3), pages 1-21, March.
    2. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    3. Petru Valentin Radu & Adam Szelag & Marcin Steczek, 2019. "On-Board Energy Storage Devices with Supercapacitors for Metro Trains—Case Study Analysis of Application Effectiveness," Energies, MDPI, vol. 12(7), pages 1-22, April.
    4. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    5. Álvaro J. López-López & Ramón R. Pecharromán & Antonio Fernández-Cardador & Asunción P. Cucala, 2017. "Improving the Traffic Model to Be Used in the Optimisation of Mass Transit System Electrical Infrastructure," Energies, MDPI, vol. 10(8), pages 1-18, August.
    6. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    7. Hammad Alnuman & Daniel Gladwin & Martin Foster, 2018. "Electrical Modelling of a DC Railway System with Multiple Trains," Energies, MDPI, vol. 11(11), pages 1-20, November.
    8. Shahsavar, Aria & Sadeghi, J. Kiarash & Shockley, Jeff & Ojha, Divesh, 2021. "On the relationship between lean scheduling and economic performance in shipbuilding: A proposed model and comparative evaluation," International Journal of Production Economics, Elsevier, vol. 239(C).
    9. Timur Yunusov & Maximilian J. Zangs & William Holderbaum, 2017. "Control of Energy Storage," Energies, MDPI, vol. 10(7), pages 1-5, July.
    10. Neumann, Anas & Hajji, Adnene & Rekik, Monia & Pellerin, Robert, 2022. "A model for advanced planning systems dedicated to the Engineer-To-Order context," International Journal of Production Economics, Elsevier, vol. 252(C).
    11. Huan Xia & Huaixin Chen & Zhongping Yang & Fei Lin & Bin Wang, 2015. "Optimal Energy Management, Location and Size for Stationary Energy Storage System in a Metro Line Based on Genetic Algorithm," Energies, MDPI, vol. 8(10), pages 1-23, October.
    12. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    13. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    14. Florian Mischek & Nysret Musliu & Andrea Schaerf, 2023. "Local search approaches for the test laboratory scheduling problem with variable task grouping," Journal of Scheduling, Springer, vol. 26(5), pages 457-477, October.
    15. Olave-Rojas, David & Álvarez-Miranda, Eduardo, 2021. "Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach," Energy, Elsevier, vol. 228(C).
    16. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    17. Camur, Mustafa C. & Sharkey, Thomas C. & Vogiatzis, Chrysafis, 2023. "The stochastic pseudo-star degree centrality problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 525-539.
    18. Junlong Peng & Mengyao Wang & Chao Peng & Ke Hu, 2022. "Research on extremely short construction period of engineering project based on labor balance under resource tolerance," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-18, March.
    19. Marcin Szott & Marcin Jarnut & Jacek Kaniewski & Łukasz Pilimon & Szymon Wermiński, 2021. "Fault-Tolerant Control in a Peak-Power Reduction System of a Traction Substation with Multi-String Battery Energy Storage System," Energies, MDPI, vol. 14(15), pages 1-23, July.
    20. Alireza Tavakolian & Alireza Rezaee & Farshid Hajati & Shahadat Uddin, 2023. "Hospital Readmission and Length-of-Stay Prediction Using an Optimized Hybrid Deep Model," Future Internet, MDPI, vol. 15(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4753-:d:608656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.