IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v67y2016i9d10.1057_jors.2016.9.html
   My bibliography  Save this article

Determination of critical chain project buffer based on information flow interactions

Author

Listed:
  • Junguang Zhang

    (University of Science and Technology Beijing)

  • Xiwei Song

    (University of Science and Technology Beijing)

  • Hongyu Chen

    (California State University Long Beach)

  • Ruixia (Sandy) Shi

    (University of San Diego)

Abstract

It has been well accepted in the literature that co-dependency between project activity durations is caused by resource tightness and network complexity. However, we show that information flow interaction between activities is the key factor for it. Based on whether there exist spliced relationships between activities, we introduce the concept of rework safety time. We propose a method to compute the rework safety time using the information output and input time factors, rework probability matrix, and rework impact matrix. We achieve the optimization of the critical chain sequencing via the design structure matrix so that the dependency between activities is reduced. The project buffer is then determined by the tail concentration method based on the optimized chain. The empirical results show that, as opposed to the traditional RSEM method, our approach improves the project buffer consumption rate, shortens project duration, reduces project cost, and increases project on-time completion rate.

Suggested Citation

  • Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
  • Handle: RePEc:pal:jorsoc:v:67:y:2016:i:9:d:10.1057_jors.2016.9
    DOI: 10.1057/jors.2016.9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2016.9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2016.9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    2. Tukel, Oya I. & Rom, Walter O. & Eksioglu, Sandra Duni, 2006. "An investigation of buffer sizing techniques in critical chain scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 401-416, July.
    3. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, April.
    4. V González & L F Alarcón & T W Yiu, 2013. "Integrated methodology to design and manage work-in-process buffers in repetitive building projects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(8), pages 1182-1193, August.
    5. Rabbani, M. & Fatemi Ghomi, S.M.T. & Jolai, F. & Lahiji, N.S., 2007. "A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept," European Journal of Operational Research, Elsevier, vol. 176(2), pages 794-808, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    2. She, Bingling & Chen, Bo & Hall, Nicholas G., 2021. "Buffer sizing in critical chain project management by network decomposition," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junguang & Song, Xiwei & Díaz, Estrella, 2016. "Project buffer sizing of a critical chain based on comprehensive resource tightness," European Journal of Operational Research, Elsevier, vol. 248(1), pages 174-182.
    2. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
    3. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    4. Guofeng Ma & Shan Jiang & Tiancheng Zhu & Jianyao Jia, 2019. "A Novel Method of Developing Construction Projects Schedule under Rework Scenarios," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    5. Guofeng Ma & Jianyao Jia & Tiancheng Zhu & Shan Jiang, 2019. "A Critical Design Structure Method for Project Schedule Development under Rework Risks," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    6. Cui, Nanfang & Demeulemeester, Erik & Bie, Li, 2016. "Incorporation of activity sensitivity measures into buffer management to manage project schedule riskAuthor-Name: Hu, Xuejun," European Journal of Operational Research, Elsevier, vol. 249(2), pages 717-727.
    7. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    8. Uwe Beyer & Oliver Ullrich, 2022. "Organizational Complexity as a Contributing Factor to Underperformance," Businesses, MDPI, vol. 2(1), pages 1-15, March.
    9. Morgan Dwyer & Bruce Cameron & Zoe Szajnfarber, 2015. "A Framework for Studying Cost Growth on Complex Acquisition Programs," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 568-583, November.
    10. Félicia Saïah & Diego Vega & Harwin de Vries & Joakim Kembro, 2023. "Process modularity, supply chain responsiveness, and moderators: The Médecins Sans Frontières response to the Covid‐19 pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1490-1511, May.
    11. Pedota, Mattia & Cicala, Francesco & Basti, Alessio, 2024. "A Wild Mind with a Disciplined Eye: Unleashing Human-GenAI Creativity Through Simulated Entity Elicitation," OSF Preprints 3bn95, Center for Open Science.
    12. Matthias Thürer & Nuno O. Fernandes & Mark Stevenson & Cristovao Silva & Silvio Carmo-Silva, 2019. "POLC-A: an assessment of POLCA’s authorization element," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2435-2447, August.
    13. Liu, Zhixue & Ding, Ronggui & Wang, Lei & Song, Rui & Song, Xinyi, 2023. "Cooperation in an uncertain environment: The impact of stakeholders' concerted action on collaborative innovation projects risk management," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    14. Robert Schmidt & Kasper Sanchez Vibaek & Simon Austin, 2014. "Evaluating the adaptability of an industrialized building using dependency structure matrices," Construction Management and Economics, Taylor & Francis Journals, vol. 32(1-2), pages 160-182, February.
    15. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    16. Kaushik Sinha & Seok‐Youn Han & Eun Suk Suh, 2020. "Design structure matrix‐based modularization approach for complex systems with multiple design constraints," Systems Engineering, John Wiley & Sons, vol. 23(2), pages 211-220, March.
    17. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    18. Samina Karim & Chi‐Hyon Lee & Manuela N. Hoehn‐Weiss, 2023. "Task bottlenecks and resource bottlenecks: A holistic examination of task systems through an organization design lens," Strategic Management Journal, Wiley Blackwell, vol. 44(8), pages 1839-1878, August.
    19. Jyh-Rong Chou, 2021. "A Scoping Review of Ontologies Relevant to Design Strategies in Response to the UN Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    20. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:67:y:2016:i:9:d:10.1057_jors.2016.9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.