IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.19075.html
   My bibliography  Save this paper

Worst-cases of distortion riskmetrics and weighted entropy with partial information

Author

Listed:
  • Baishuai Zuo
  • Chuancun Yin

Abstract

In this paper, we discuss the worst-case of distortion riskmetrics for general distributions when only partial information (mean and variance) is known. This result is applicable to general class of distortion risk measures and variability measures. Furthermore, we also consider worst-case of weighted entropy for general distributions when only partial information is available. Specifically, we provide some applications for entropies, weighted entropies and risk measures. The commonly used entropies include Gini functional, cumulative residual entropy, tail-Gini functional, cumulative Tsallis past entropy, extended Gini coefficient and so on. The risk measures contain some premium principles and shortfalls based on entropy. The shortfalls include the Gini shortfall, extended Gini shortfall, shortfall of cumulative residual entropy and shortfall of cumulative residual Tsallis entropy with order $\alpha$.

Suggested Citation

  • Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.
  • Handle: RePEc:arx:papers:2405.19075
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.19075
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgios Psarrakos & Jorge Navarro, 2013. "Generalized cumulative residual entropy and record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 623-640, July.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    4. Haberman, Steven & Khalaf-Allah, Marwa & Verrall, Richard, 2011. "Entropy, longevity and the cost of annuities," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 197-204, March.
    5. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    6. Mohammed Berkhouch & Ghizlane Lakhnati & Marcelo Brutti Righi, 2018. "Extended Gini-Type Measures of Risk and Variability," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 295-314, May.
    7. Mengshuo Zhao & Narayanaswamy Balakrishnan & Chuancun Yin, 2024. "Extremal cases of distortion risk measures with partial information," Papers 2404.13637, arXiv.org, revised Oct 2024.
    8. Shao, Hui & Zhang, Zhe George, 2023. "Distortion risk measure under parametric ambiguity," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1159-1172.
    9. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    10. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    11. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    12. G. Rajesh & S. M. Sunoj, 2019. "Some properties of cumulative Tsallis entropy of order $$\alpha $$ α," Statistical Papers, Springer, vol. 60(3), pages 933-943, June.
    13. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    14. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    15. M. Mirali & S. Baratpour & V. Fakoor, 2017. "On weighted cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(6), pages 2857-2869, March.
    16. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    17. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    18. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
    19. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    20. M. Mirali & S. Baratpour, 2017. "Dynamic version of weighted cumulative residual entropy," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11047-11059, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshuo Zhao & Narayanaswamy Balakrishnan & Chuancun Yin, 2024. "Extremal cases of distortion risk measures with partial information," Papers 2404.13637, arXiv.org, revised Oct 2024.
    2. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    3. Mengshuo Zhao & Chuancun Yin, 2024. "Best- and worst-case Scenarios for GlueVaR distortion risk measure with Incomplete information," Papers 2409.19902, arXiv.org.
    4. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Risk sharing, measuring variability, and distortion riskmetrics," Papers 2302.04034, arXiv.org.
    5. Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
    6. Ruodu Wang & Qinyu Wu, 2022. "Probabilistic risk aversion for generalized rank-dependent functions," Papers 2209.03425, arXiv.org, revised Sep 2024.
    7. Boonen, Tim J. & Han, Xia, 2024. "Optimal insurance with mean-deviation measures," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 1-24.
    8. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    9. Cai, Jun & Liu, Fangda & Yin, Mingren, 2024. "Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance," European Journal of Operational Research, Elsevier, vol. 318(1), pages 310-326.
    10. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    11. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    12. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    13. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    14. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    15. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    16. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    17. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    18. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    19. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    20. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.19075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.