IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i2p389-434.html
   My bibliography  Save this article

Preference robust distortion risk measure and its application

Author

Listed:
  • Wei Wang
  • Huifu Xu

Abstract

Distortion risk measure (DRM) plays a crucial role in management science and finance particularly actuarial science. Various DRMs have been introduced but little is discussed on which DRM at hand should be chosen to address a decision maker's (DM's) risk preference. This paper aims to fill out the gap. Specifically, we consider a situation where the true distortion function is unknown either because it is difficult to identify/elicit and/or because the DM's risk preference is ambiguous. We introduce a preference robust distortion risk measure (PRDRM), which is based on the worst‐case distortion function from an ambiguity set of distortion functions to mitigate the impact arising from the ambiguity. The ambiguity set is constructed under well‐known general principles such as concavity and inverse S‐shapedness of distortion functions (overweighting on events from impossible to possible or possible to certainty and underweighting on those from possible to more possible) as well as new user‐specific information such as sensitivity to tail losses, confidence intervals to some lotteries, and preferences to certain lotteries over others. To calculate the proposed PRDRM, we use the convex and/or concave envelope of a set of points to characterize the curvature of the distortion function and derive a tractable reformulation of the PRDRM when the underlying random loss is discretely distributed. Moreover, we show that the worst‐case distortion function is a nondecreasing piecewise linear function and can be determined by solving a linear programming problem. Finally, we apply the proposed PRDRM to a risk capital allocation problem and carry out some numerical tests to examine the efficiency of the PRDRM model.

Suggested Citation

  • Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:389-434
    DOI: 10.1111/mafi.12379
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12379
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Hu & Sanjay Mehrotra, 2015. "Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization," IISE Transactions, Taylor & Francis Journals, vol. 47(4), pages 358-372, April.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Tsanakas, A. & Desli, E., 2003. "Risk Measures and Theories of Choice," British Actuarial Journal, Cambridge University Press, vol. 9(4), pages 959-991, October.
    5. Pichler, Alois & Shapiro, Alexander, 2015. "Minimal representation of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 184-193.
    6. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    7. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    8. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    9. Mohammed Abdellaoui & Han Bleichrodt & Emmanuel Kemel & Olivier l’Haridon, 2021. "Measuring Beliefs Under Ambiguity," Operations Research, INFORMS, vol. 69(2), pages 599-612, March.
    10. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    11. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    12. Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
    13. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    14. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    17. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    18. Haskell, William B. & Fu, Lunce & Dessouky, Maged, 2016. "Ambiguity in risk preferences in robust stochastic optimization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 214-225.
    19. Tversky, Amos & Wakker, Peter, 1995. "Risk Attitudes and Decision Weights," Econometrica, Econometric Society, vol. 63(6), pages 1255-1280, November.
    20. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    21. Sordo, Miguel A. & Castaño-Martínez, Antonia & Pigueiras, Gema, 2016. "A family of premium principles based on mixtures of TVaRs," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 397-405.
    22. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    23. Fabio Maccheroni, 2002. "Maxmin under risk," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 19(4), pages 823-831.
    24. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    25. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    26. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Ghossoub & Michael B. Zhu & Wing Fung Chong, 2024. "Pareto-Optimal Peer-to-Peer Risk Sharing with Robust Distortion Risk Measures," Papers 2409.05103, arXiv.org.
    2. Jungsywan H. Sepanski & Xiwen Wang, 2023. "New Classes of Distortion Risk Measures and Their Estimation," Risks, MDPI, vol. 11(11), pages 1-21, November.
    3. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    4. Marcelo Righi, 2024. "Robust convex risk measures," Papers 2406.12999, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    2. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
    3. Eyal Baharad & Doron Kliger, 2013. "Market failure in light of non-expected utility," Theory and Decision, Springer, vol. 75(4), pages 599-619, October.
    4. Michael Kilka & Martin Weber, 2001. "What Determines the Shape of the Probability Weighting Function Under Uncertainty?," Management Science, INFORMS, vol. 47(12), pages 1712-1726, December.
    5. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    6. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.
    7. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    8. Mich�le Cohen, 2015. "Risk Perception, Risk Attitude, and Decision: A Rank-Dependent Analysis," Mathematical Population Studies, Taylor & Francis Journals, vol. 22(1), pages 53-70, March.
    9. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    10. Gul, Faruk & Pesendorfer, Wolfgang, 2015. "Hurwicz expected utility and subjective sources," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 465-488.
    11. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    12. Víctor González-Jiménez, 2021. "Incentive contracts when agents distort probabilities," Vienna Economics Papers vie2101, University of Vienna, Department of Economics.
    13. Arjan Verschoor & Ben D’Exelle, 2022. "Probability weighting for losses and for gains among smallholder farmers in Uganda," Theory and Decision, Springer, vol. 92(1), pages 223-258, February.
    14. Dorian Jullien & Alexandre Truc, 2024. "Towards a History of Behavioral and Experimental Economics in France," GREDEG Working Papers 2024-23, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    15. Bleichrodt, Han & Eeckhoudt, Louis, 2006. "Survival risks, intertemporal consumption, and insurance: The case of distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 335-346, April.
    16. repec:dau:papers:123456789/1051 is not listed on IDEAS
    17. Laure Cabantous & Denis Hilton, 2006. "De l'aversion à l'ambiguïté aux attitudes face à l'ambiguïté. Les apports d'une perspective psychologique en économie," Revue économique, Presses de Sciences-Po, vol. 57(2), pages 259-280.
    18. Kpegli, Yao Thibaut & Corgnet, Brice & Zylbersztejn, Adam, 2023. "All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    19. Salvatore Greco & Fabio Rindone, 2014. "The bipolar Choquet integral representation," Theory and Decision, Springer, vol. 77(1), pages 1-29, June.
    20. Özalp Özer & Yanchong Zheng, 2016. "Markdown or Everyday Low Price? The Role of Behavioral Motives," Management Science, INFORMS, vol. 62(2), pages 326-346, February.
    21. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:2:p:389-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.