IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p310-326.html
   My bibliography  Save this article

Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance

Author

Listed:
  • Cai, Jun
  • Liu, Fangda
  • Yin, Mingren

Abstract

Stop-loss and limited loss random variables are two important transforms of a loss random variable and appear in many modeling problems in insurance, finance, and other fields. Risk levels of a loss variable and its transforms are often measured by risk measures. When only partial information on a loss variable is available, risk measures of the loss variable and its transforms cannot be evaluated effectively. To deal with the situation of distribution uncertainty, the worst-case values of risk measures of a loss variable over an uncertainty set, describing all the possible distributions of the loss variable, have been extensively used in robust risk management for many fields. However, most of these existing results on the worst-case values of risk measures of a loss variable cannot be applied directly to the worst-case values of risk measures of its transforms. In this paper, we derive the expressions of the worst-case values of distortion risk measures of stop-loss and limited loss random variables over an uncertainty set introduced in Bernard et al. (2023). This set represents a decision maker’s belief in the distribution of a loss variable. We find the distributions under which the worst-case values are attainable. These results have potential applications in a variety of fields. To illustrate their applications, we discuss how to model optimal stop-loss reinsurance problems and how to determine optimal stop-loss retentions under distribution uncertainty. Explicit and closed-form expressions for the worst-case TVaRs of stop-loss and limited loss random variables and optimal stop-loss retentions are given under special forms of the uncertainty set. Numerical results are presented under more general forms of the uncertainty set.

Suggested Citation

  • Cai, Jun & Liu, Fangda & Yin, Mingren, 2024. "Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance," European Journal of Operational Research, Elsevier, vol. 318(1), pages 310-326.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:310-326
    DOI: 10.1016/j.ejor.2024.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    2. Kathleen E. Miao & Silvana M. Pesenti, 2024. "Robust Elicitable Functionals," Papers 2409.04412, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:310-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.