IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p310-326.html
   My bibliography  Save this article

Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance

Author

Listed:
  • Cai, Jun
  • Liu, Fangda
  • Yin, Mingren

Abstract

Stop-loss and limited loss random variables are two important transforms of a loss random variable and appear in many modeling problems in insurance, finance, and other fields. Risk levels of a loss variable and its transforms are often measured by risk measures. When only partial information on a loss variable is available, risk measures of the loss variable and its transforms cannot be evaluated effectively. To deal with the situation of distribution uncertainty, the worst-case values of risk measures of a loss variable over an uncertainty set, describing all the possible distributions of the loss variable, have been extensively used in robust risk management for many fields. However, most of these existing results on the worst-case values of risk measures of a loss variable cannot be applied directly to the worst-case values of risk measures of its transforms. In this paper, we derive the expressions of the worst-case values of distortion risk measures of stop-loss and limited loss random variables over an uncertainty set introduced in Bernard et al. (2023). This set represents a decision maker’s belief in the distribution of a loss variable. We find the distributions under which the worst-case values are attainable. These results have potential applications in a variety of fields. To illustrate their applications, we discuss how to model optimal stop-loss reinsurance problems and how to determine optimal stop-loss retentions under distribution uncertainty. Explicit and closed-form expressions for the worst-case TVaRs of stop-loss and limited loss random variables and optimal stop-loss retentions are given under special forms of the uncertainty set. Numerical results are presented under more general forms of the uncertainty set.

Suggested Citation

  • Cai, Jun & Liu, Fangda & Yin, Mingren, 2024. "Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance," European Journal of Operational Research, Elsevier, vol. 318(1), pages 310-326.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:310-326
    DOI: 10.1016/j.ejor.2024.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172400211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaas, R. & Goovaerts, M. J., 1986. "Extremal values of stop-loss premiums under moment constraints," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 279-283, October.
    2. Jansen, K. & Haezendonck, J. & Goovaerts, M. J., 1986. "Upper bounds on stop-loss premiums in case of known moments up to the fourth order," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 315-334, October.
    3. Asimit, Alexandru V. & Hu, Junlei & Xie, Yuantao, 2019. "Optimal robust insurance with a finite uncertainty set," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 67-81.
    4. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    5. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    6. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    7. Hu, Xiang & Yang, Hailiang & Zhang, Lianzeng, 2015. "Optimal retention for a stop-loss reinsurance with incomplete information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 15-21.
    8. De Vylder, F. & Goovaerts, M. J., 1982. "Analytical best upper bounds on stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 1(3), pages 163-175, July.
    9. Joshua Gavagan & Liang Hu & Gee Y. Lee & Haiyan Liu & Anna Weixel, 2022. "Optimal reinsurance with model uncertainty and Stackelberg game," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2022(1), pages 29-48, January.
    10. Jiang, Wenjun & Ren, Jiandong & Yang, Chen & Hong, Hanping, 2019. "On optimal reinsurance treaties in cooperative game under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 173-184.
    11. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    12. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    13. Hu, Xiang & Duan, Baige & Zhang, Lianzeng, 2017. "De Vylder approximation to the optimal retention for a combination of quota-share and excess of loss reinsurance with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 48-55.
    14. Liu, Haiyan & Mao, Tiantian, 2022. "Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 393-417.
    15. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    16. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    17. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    18. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    19. R. Jagannathan, 1977. "Technical Note—Minimax Procedure for a Class of Linear Programs under Uncertainty," Operations Research, INFORMS, vol. 25(1), pages 173-177, February.
    20. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    21. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    22. Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    2. Mengshuo Zhao & Chuancun Yin, 2024. "Best- and worst-case Scenarios for GlueVaR distortion risk measure with Incomplete information," Papers 2409.19902, arXiv.org.
    3. Kathleen E. Miao & Silvana M. Pesenti, 2024. "Robust Elicitable Functionals," Papers 2409.04412, arXiv.org.
    4. Jun Cai & Zhanyi Jiao & Tiantian Mao, 2024. "Worst-case values of target semi-variances with applications to robust portfolio selection," Papers 2410.01732, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    2. Jun Cai & Zhanyi Jiao & Tiantian Mao, 2024. "Worst-case values of target semi-variances with applications to robust portfolio selection," Papers 2410.01732, arXiv.org, revised Oct 2024.
    3. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    4. Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.
    5. Mengshuo Zhao & Narayanaswamy Balakrishnan & Chuancun Yin, 2024. "Extremal cases of distortion risk measures with partial information," Papers 2404.13637, arXiv.org, revised Oct 2024.
    6. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    7. Mengshuo Zhao & Chuancun Yin, 2024. "Best- and worst-case Scenarios for GlueVaR distortion risk measure with Incomplete information," Papers 2409.19902, arXiv.org.
    8. Liu, Haiyan & Mao, Tiantian, 2022. "Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 393-417.
    9. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    10. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    11. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    12. Schepper, Ann De & Heijnen, Bart, 2007. "Distribution-free option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 179-199, March.
    13. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    14. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    15. Ernest Aboagye & Vali Asimit & Tsz Chai Fung & Liang Peng & Qiuqi Wang, 2024. "A Revisit of the Optimal Excess-of-Loss Contract," Papers 2405.00188, arXiv.org.
    16. Robert Howley & Robert Storer & Juan Vera & Luis F. Zuluaga, 2016. "Computing semiparametric bounds on the expected payments of insurance instruments via column generation," Papers 1601.02149, arXiv.org.
    17. Wenhua Lv & Linxiao Wei, 2023. "Distributionally Robust Reinsurance with Glue Value-at-Risk and Expected Value Premium," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    18. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    19. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    20. Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:310-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.