IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v114y2024icp212-222.html
   My bibliography  Save this article

A family of variability measures based on the cumulative residual entropy and distortion functions

Author

Listed:
  • Psarrakos, Georgios
  • Toomaj, Abdolsaeed
  • Vliora, Polyxeni

Abstract

Variability measures are important tools in the construction of premium principles and risk aversions. In this paper, we propose a family of such measures based on a distorted weighted cumulative residual entropy, which follows by a sensitivity analysis of distortion risk measures. For this family, we obtain properties, connections with other measures, a covariance representation, and some useful interpretations. Furthermore, we explore an application on premium principles based on beta generated distributions, and we give an empirical estimation. We also provide bounds and numerical illustrations.

Suggested Citation

  • Psarrakos, Georgios & Toomaj, Abdolsaeed & Vliora, Polyxeni, 2024. "A family of variability measures based on the cumulative residual entropy and distortion functions," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 212-222.
  • Handle: RePEc:eee:insuma:v:114:y:2024:i:c:p:212-222
    DOI: 10.1016/j.insmatheco.2023.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872300104X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    2. Georgios Psarrakos & Jorge Navarro, 2013. "Generalized cumulative residual entropy and record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(5), pages 623-640, July.
    3. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. López-Díaz, Miguel & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2012. "On the Lp-metric between a probability distribution and its distortion," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 257-264.
    6. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    7. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    8. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    9. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    10. Jones, Bruce L. & Zitikis, Ricardas, 2007. "Risk measures, distortion parameters, and their empirical estimation," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 279-297, September.
    11. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    12. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    13. Shaun Wang, 1998. "An Actuarial Index of the Right-Tail Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(2), pages 88-101.
    14. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(1), pages 1-43, June.
    15. Haberman, Steven & Khalaf-Allah, Marwa & Verrall, Richard, 2011. "Entropy, longevity and the cost of annuities," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 197-204, March.
    16. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    17. Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
    18. Laurence A. Baxter, 1982. "Reliability applications of the relevation transform," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(2), pages 323-330, June.
    19. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    20. Yang, Jianping & Zhuang, Weiwei & Hu, Taizhong, 2014. "Lp-metric under the location-independent risk ordering of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 321-324.
    21. Sordo, Miguel A. & Castaño-Martínez, Antonia & Pigueiras, Gema, 2016. "A family of premium principles based on mixtures of TVaRs," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 397-405.
    22. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    23. Abdolsaeed Toomaj & Antonio Di Crescenzo, 2020. "Connections between Weighted Generalized Cumulative Residual Entropy and Variance," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    24. Sordo, Miguel A., 2008. "Characterizations of classes of risk measures by dispersive orders," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1028-1034, June.
    25. Murali Rao, 2005. "More on a New Concept of Entropy and Information," Journal of Theoretical Probability, Springer, vol. 18(4), pages 967-981, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    2. Francesca Greselin & Ričardas Zitikis, 2018. "From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure of Risk: A Modeller’s Perspective," Econometrics, MDPI, vol. 6(1), pages 1-20, January.
    3. Peng, Liang & Qi, Yongcheng & Wang, Ruodu & Yang, Jingping, 2012. "Jackknife empirical likelihood method for some risk measures and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 142-150.
    4. Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
    5. Greselin, Francesca & Zitikis, Ricardas, 2015. "Measuring economic inequality and risk: a unifying approach based on personal gambles, societal preferences and references," MPRA Paper 65892, University Library of Munich, Germany.
    6. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    7. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    8. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    9. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    10. Sánchez-Sánchez, M. & Sordo, M.A. & Suárez-Llorens, A. & Gómez-Déniz, E., 2019. "Deriving Robust Bayesian Premiums Under Bands Of Prior Distributions With Applications," ASTIN Bulletin, Cambridge University Press, vol. 49(1), pages 147-168, January.
    11. Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.
    12. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2012. "Comparison of risks based on the expected proportional shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 292-302.
    13. Sordo, Miguel A. & Castaño-Martínez, Antonia & Pigueiras, Gema, 2016. "A family of premium principles based on mixtures of TVaRs," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 397-405.
    14. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    15. Patricia Ortega-Jiménez & Miguel A. Sordo & Alfonso Suárez-Llorens, 2021. "Stochastic Comparisons of Some Distances between Random Variables," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    16. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    17. Brahimi, Brahim & Abdelli, Jihane, 2016. "Estimating the distortion parameter of the proportional hazards premium for heavy-tailed losses under Lévy-stable regime," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 135-143.
    18. Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2011. "Stochastic comparisons of distorted variability measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 11-17, July.
    19. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.
    20. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.

    More about this item

    Keywords

    Variability measures; Distortion functions; Cumulative residual entropy; Mean residual life function; Ageing classes;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:114:y:2024:i:c:p:212-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.