IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.03425.html
   My bibliography  Save this paper

Probabilistic risk aversion for generalized rank-dependent functions

Author

Listed:
  • Ruodu Wang
  • Qinyu Wu

Abstract

Probabilistic risk aversion, defined through quasi-convexity in probabilistic mixtures, is a common useful property in decision analysis. We study a general class of non-monotone mappings, called the generalized rank-dependent functions, which includes the preference models of expected utilities, dual utilities, and rank-dependent utilities as special cases, as well as signed Choquet functions used in risk management. Our results fully characterize probabilistic risk aversion for generalized rank-dependent functions: This property is determined by the distortion function, which is precisely one of the two cases: those that are convex and those that correspond to scaled quantile-spread mixtures. Our result also leads to seven equivalent conditions for quasi-convexity in probabilistic mixtures of dual utilities and signed Choquet functions. As a consequence, although probabilistic risk aversion is quite different from the classic notion of strong risk aversion for generalized rank-dependent functions, these two notions coincide for dual utilities under an additional continuity assumption.

Suggested Citation

  • Ruodu Wang & Qinyu Wu, 2022. "Probabilistic risk aversion for generalized rank-dependent functions," Papers 2209.03425, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2209.03425
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.03425
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    5. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    6. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    7. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    8. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    9. Wakker, Peter P. & Yang, Jingni, 2019. "A powerful tool for analyzing concave/convex utility and weighting functions," Journal of Economic Theory, Elsevier, vol. 181(C), pages 143-159.
    10. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    13. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    14. Machina, Mark J & Schmeidler, David, 1992. "A More Robust Definition of Subjective Probability," Econometrica, Econometric Society, vol. 60(4), pages 745-780, July.
    15. Dekel, Eddie, 1986. "An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom," Journal of Economic Theory, Elsevier, vol. 40(2), pages 304-318, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    2. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    3. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    4. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    5. Wakker, Peter P. & Yang, Jingni, 2021. "Concave/convex weighting and utility functions for risk: A new light on classical theorems," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 429-435.
    6. Giulio Principi & Peter P. Wakker & Ruodu Wang, 2023. "Antimonotonicity for Preference Axioms: The Natural Counterpart to Comonotonicity," Papers 2307.08542, arXiv.org.
    7. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    8. Baishuai Zuo & Chuancun Yin, 2024. "Worst-cases of distortion riskmetrics and weighted entropy with partial information," Papers 2405.19075, arXiv.org.
    9. Dean, Mark & Ortoleva, Pietro, 2017. "Allais, Ellsberg, and preferences for hedging," Theoretical Economics, Econometric Society, vol. 12(1), January.
    10. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    11. Tobias Fissler & Fangda Liu & Ruodu Wang & Linxiao Wei, 2024. "Elicitability and identifiability of tail risk measures," Papers 2404.14136, arXiv.org, revised Jun 2024.
    12. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    13. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    14. Raquel M. Gaspar & Paulo M. Silva, 2023. "Investors’ perspective on portfolio insurance," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(1), pages 49-79, January.
    15. Aluma Dembo & Shachar Kariv & Matthew Polisson & John Quah, 2021. "Ever since Allais," IFS Working Papers W21/15, Institute for Fiscal Studies.
    16. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    17. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    18. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    19. John Hey, "undated". "Experiments and the Economics of Individual Decision Making Under Risk and Uncertainty," Discussion Papers 95/49, Department of Economics, University of York.
    20. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.03425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.