IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.04889.html
   My bibliography  Save this paper

Optimizing distortion riskmetrics with distributional uncertainty

Author

Listed:
  • Silvana Pesenti
  • Qiuqi Wang
  • Ruodu Wang

Abstract

Optimization of distortion riskmetrics with distributional uncertainty has wide applications in finance and operations research. Distortion riskmetrics include many commonly applied risk measures and deviation measures, which are not necessarily monotone or convex. One of our central findings is a unifying result that allows us to convert an optimization of a non-convex distortion riskmetric with distributional uncertainty to a convex one, leading to great tractability. A sufficient condition to the unifying equivalence result is the novel notion of closedness under concentration, a variation of which is also shown to be necessary for the equivalence. Our results include many special cases that are well studied in the optimization literature, including but not limited to optimizing probabilities, Value-at-Risk, Expected Shortfall, Yaari's dual utility, and differences between distortion risk measures, under various forms of distributional uncertainty. We illustrate our theoretical results via applications to portfolio optimization, optimization under moment constraints, and preference robust optimization.

Suggested Citation

  • Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2011.04889
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.04889
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Erick Delage & Sharon Arroyo & Yinyu Ye, 2014. "The Value of Stochastic Modeling in Two-Stage Stochastic Programs with Cost Uncertainty," Operations Research, INFORMS, vol. 62(6), pages 1377-1393, December.
    3. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    5. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    6. Mao, Tiantian & Wang, Ruodu, 2015. "On aggregation sets and lower-convex sets," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 170-181.
    7. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    8. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    9. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    10. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    11. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    12. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    13. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    16. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    17. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    18. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    19. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.
    20. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    21. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    22. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    23. Jun Cai & Haiyan Liu & Ruodu Wang, 2018. "Asymptotic Equivalence Of Risk Measures Under Dependence Uncertainty," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 29-49, January.
    24. Erick Delage & Jonathan Yu-Meng Li, 2018. "Minimizing Risk Exposure When the Choice of a Risk Measure Is Ambiguous," Management Science, INFORMS, vol. 64(1), pages 327-344, January.
    25. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    26. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    27. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    28. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    2. Marcelo Righi, 2024. "Robust convex risk measures," Papers 2406.12999, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    2. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    3. Haiyan Liu & Bin Wang & Ruodu Wang & Sheng Chao Zhuang, 2023. "Distorted optimal transport," Papers 2308.11238, arXiv.org.
    4. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    5. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2020. "Ordering and Inequalities for Mixtures on Risk Aggregation," Papers 2007.12338, arXiv.org, revised Jun 2021.
    6. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    7. Liu, Haiyan, 2024. "Worst-case risk with unspecified risk preferences," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 235-248.
    8. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    9. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    10. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    11. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    12. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    13. Shao, Hui & Zhang, Zhe George, 2023. "Distortion risk measure under parametric ambiguity," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1159-1172.
    14. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    15. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.
    16. Qiuqi Wang & Ruodu Wang & Ricardas Zitikis, 2021. "Risk measures induced by efficient insurance contracts," Papers 2109.00314, arXiv.org, revised Sep 2021.
    17. Mario Ghossoub & Qinghua Ren & Ruodu Wang, 2024. "Counter-monotonic risk allocations and distortion risk measures," Papers 2407.16099, arXiv.org.
    18. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    19. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    20. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.04889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.