IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v118y2024icp1-24.html
   My bibliography  Save this article

Optimal insurance with mean-deviation measures

Author

Listed:
  • Boonen, Tim J.
  • Han, Xia

Abstract

This paper studies an optimal insurance contracting problem in which the preferences of the decision maker are given by the sum of the expected loss and a convex, increasing function of a deviation measure. As for the deviation measure, our focus is on convex signed Choquet integrals (such as the Gini coefficient and a convex distortion risk measure minus the expected value) and on the standard deviation. We find that if the expected value premium principle is used, then stop-loss indemnities are optimal, and we provide a precise characterization of the corresponding deductible. Moreover, if the premium principle is based on Value-at-Risk or Expected Shortfall, then a particular layer-type indemnity is optimal, in which there is coverage for small losses up to a limit, and additionally for losses beyond another deductible. The structure of these optimal indemnities remains unchanged if there is a limit on the insurance premium budget. If the unconstrained solution is not feasible, then the deductible is increased to make the budget constraint binding. We provide several examples of these results based on the Gini coefficient and the standard deviation.

Suggested Citation

  • Boonen, Tim J. & Han, Xia, 2024. "Optimal insurance with mean-deviation measures," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 1-24.
  • Handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:1-24
    DOI: 10.1016/j.insmatheco.2024.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668724000611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2024.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    4. Chi, Yichun & Zhuang, Sheng Chao, 2022. "Regret-based optimal insurance design," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 22-41.
    5. Chi, Yichun & Zheng, Jiakun & Zhuang, Shengchao, 2022. "S-shaped narrow framing, skewness and the demand for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 279-292.
    6. Wang, Qiuqi & Wang, Ruodu & Wei, Yunran, 2020. "Distortion Riskmetrics On General Spaces," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 827-851, September.
    7. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    8. Lo, Ambrose, 2017. "A Neyman-Pearson Perspective On Optimal Reinsurance With Constraints," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 467-499, May.
    9. Jun Cai & Yichun Chi, 2020. "Optimal reinsurance designs based on risk measures: a review," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 1-13, July.
    10. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    11. Liang, Xiaoqing & Wang, Ruodu & Young, Virginia R., 2022. "Optimal insurance to maximize RDEU under a distortion-deviation premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 35-59.
    12. Jun Cai & Yichun Chi, 2020. "Responses to discussions on ‘Optimal reinsurance designs based on risk measures: a review’," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 26-27, July.
    13. Jun Cai & Chengguo Weng, 2016. "Optimal reinsurance with expectile," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(7), pages 624-645, August.
    14. Ka Chun Cheung & Ambrose Lo, 2017. "Characterizations of optimal reinsurance treaties: a cost-benefit approach," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2017(1), pages 1-28, January.
    15. De Giorgi, Enrico & Post, Thierry, 2008. "Second-Order Stochastic Dominance, Reward-Risk Portfolio Selection, and the CAPM," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 525-546, June.
    16. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    17. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    18. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    19. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    20. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    21. Assa, Hirbod, 2015. "On optimal reinsurance policy with distortion risk measures and premiums," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 70-75.
    22. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    23. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    24. Liu, Fangda & Cai, Jun & Lemieux, Christiane & Wang, Ruodu, 2020. "Convex risk functionals: Representation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 66-79.
    25. Xiaoqing Liang & Ruodu Wang & Virginia Young, 2021. "Optimal Insurance to Maximize RDEU Under a Distortion-Deviation Premium Principle," Papers 2107.02656, arXiv.org, revised Feb 2022.
    26. Jiakun Zheng, 2020. "Optimal insurance design under narrow framing," Post-Print hal-04227370, HAL.
    27. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    28. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim J. Boonen & Xia Han, 2023. "Optimal insurance with mean-deviation measures," Papers 2312.01813, arXiv.org.
    2. Qiuqi Wang & Ruodu Wang & Ricardas Zitikis, 2021. "Risk measures induced by efficient insurance contracts," Papers 2109.00314, arXiv.org, revised Sep 2021.
    3. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    4. Boonen, Tim J. & Jiang, Wenjun, 2024. "Robust insurance design with distortion risk measures," European Journal of Operational Research, Elsevier, vol. 316(2), pages 694-706.
    5. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    6. Liang, Xiaoqing & Jiang, Wenjun & Zhang, Yiying, 2023. "Optimal insurance design under mean-variance preference with narrow framing," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 59-79.
    7. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    8. Tim J. Boonen & Yuyu Chen & Xia Han & Qiuqi Wang, 2024. "Optimal insurance design with Lambda-Value-at-Risk," Papers 2408.09799, arXiv.org.
    9. Hirbod Assa, 2015. "Optimal risk allocation in a market with non-convex preferences," Papers 1503.04460, arXiv.org.
    10. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    11. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Jul 2024.
    12. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    13. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    14. Chi, Yichun & Liu, Fangda, 2021. "Enhancing an insurer's expected value by reinsurance and external financing," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 466-484.
    15. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    16. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    17. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    18. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    19. Mario Ghossoub & Qinghua Ren & Ruodu Wang, 2024. "Counter-monotonic risk allocations and distortion risk measures," Papers 2407.16099, arXiv.org.
    20. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.

    More about this item

    Keywords

    Risk management; Deviation measures; Mean-deviation measures; Monotonicity; Optimal insurance; Stop-loss indemnities; Budget constraint;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • D86 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Economics of Contract Law
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:118:y:2024:i:c:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.