IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.15950.html
   My bibliography  Save this paper

Implied volatility (also) is path-dependent

Author

Listed:
  • Herv'e Andr`es

    (CERMICS)

  • Alexandre Boumezoued

    (CERMICS, MATHRISK)

  • Benjamin Jourdain

    (CERMICS, MATHRISK)

Abstract

We propose a new model for the coherent forecasting of both the implied volatility surfaces and the underlying asset returns.In the spirit of Guyon and Lekeufack (2023) who are interested in the dependence of volatility indices (e.g. the VIX) on the paths of the associated equity indices (e.g. the S&P 500), we first study how implied volatility can be predicted using the past trajectory of the underlying asset price. Our empirical study reveals that a large part of the movements of the at-the-money-forward implied volatility for up to two years maturities can be explained using the past returns and their squares. Moreover, we show that up to four years of the past evolution of the underlying price should be used for the prediction and that this feedback effect gets weaker when the maturity increases. Building on this new stylized fact, we fit to historical data a parsimonious version of the SSVI parameterization (Gatheral and Jacquier, 2014) of the implied volatility surface relying on only four parameters and show that the two parameters ruling the at-the-money-forward implied volatility as a function of the maturity exhibit a path-dependent behavior with respect to the underlying asset price. Finally, we propose a model for the joint dynamics of the implied volatility surface and the underlying asset price. The latter is modelled using a variant of the path-dependent volatility model of Guyon and Lekeufack and the former is obtained by adding a feedback effect of the underlying asset price onto the two parameters ruling the at-the-money-forward implied volatility in the parsimonious SSVI parameterization and by specifying a hidden semi-Markov diffusion model for the residuals of these two parameters and the two other parameters. Thanks to this model, we are able to simulate highly realistic paths of implied volatility surfaces that are arbitrage-free.

Suggested Citation

  • Herv'e Andr`es & Alexandre Boumezoued & Benjamin Jourdain, 2023. "Implied volatility (also) is path-dependent," Papers 2312.15950, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2312.15950
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.15950
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Do Call Prices and the Underlying Stock Always Move in the Same Direction?," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 549-584.
    3. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    4. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    2. Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
    3. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    4. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    5. Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
    6. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Jacinto Marabel Romo, 2012. "Volatility Regimes For The Vix Index," Revista de Economia Aplicada, Universidad de Zaragoza, Departamento de Estructura Economica y Economia Publica, vol. 20(2), pages 111-134, Autumn.
    8. Fengler, Matthias R. & Härdle, Wolfgang Karl & Mammen, Enno, 2005. "A dynamic semiparametric factor model for implied volatility string dynamics," SFB 649 Discussion Papers 2005-020, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    10. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Financial Stochastic Models Diffusion: From Risk-Neutral to Real-World Measure," Papers 2409.12783, arXiv.org.
    13. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    16. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    17. repec:hum:wpaper:sfb649dp2007-023 is not listed on IDEAS
    18. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    19. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    21. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    22. repec:uts:finphd:40 is not listed on IDEAS
    23. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.15950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.