IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v20y2014i2p101-120n2.html
   My bibliography  Save this article

High performance computing in quantitative finance: A review from the pseudo-random number generator perspective

Author

Listed:
  • Mascagni Michael

    (Departments of Computer Science, Mathematics & Scientific Computing, and Graduate Program in Molecular Biophysics, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Qiu Yue

    (Departments of Computer Science, Mathematics & Scientific Computing, Florida State University, Tallahassee, FL 32308-4530, USA)

  • Hin Lin-Yee

    (Department of Mathematics & Statistics, Curtin University, Bentley, WA 6102, Australia)

Abstract

The great demand for high computational capabilities is omnipresent in every facet of modern financial activities, ranging from financial product pricing, trading and hedging at the front desk on the one end to risk management activities for in house monitoring and legislative compliance on the other. While this demand is met by scalable high performance computing, along with it come new challenges. As a notable proportion of financial computations involve the use of pseudo-random numbers, the engagement of a large number of parallel threads leads to consumption of large amount of pseudo-random numbers, uncovering potential intra-thread and inter-thread correlation that will lead to bias and loss of efficiency in the computation. This paper reviews, in the setting of derivative instrument pricing, the performance of some commonly used scalable pseudo-random number generators constructed based on different parallelization strategies: (1) parameterization (SPRNG), (2) sequence-splitting (TRNG and RngStream), and (3) cryptography (Random123). In addition, the potential impact of intra-thread and inter-thread correlation in pricing and sensitivity analysis of some common contingent claims via Monte Carlo simulation is examined.

Suggested Citation

  • Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
  • Handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:101-120:n:2
    DOI: 10.1515/mcma-2013-0020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2013-0020
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2013-0020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubenthaler, Sylvain, 2003. "Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 311-349, February.
    2. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    3. Sana Ben Hamida & Rama Cont, 2005. "Recovering Volatility from Option Prices by Evolutionary Optimization," Post-Print hal-02490586, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    3. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    4. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    5. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    6. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    7. Jin Sun & Eckhard Platen, 2019. "Benchmarked Risk Minimizing Hedging Strategies for Life Insurance Policies," Research Paper Series 399, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    9. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    10. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    11. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    12. T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
    13. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    14. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    15. Arianna Agosto & Enrico Moretto, 2010. "Applying default probabilities in an exponential barrier structural model," Economics and Quantitative Methods qf1005, Department of Economics, University of Insubria.
    16. Gabriel Faraud & Stéphane Goutte, 2014. "Bessel Bridges Decomposition with Varying Dimension: Applications to Finance," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1375-1403, December.
    17. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    18. Jimin Lin & Guixin Liu, 2024. "Neural Term Structure of Additive Process for Option Pricing," Papers 2408.01642, arXiv.org, revised Oct 2024.
    19. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    20. Roger Lord, 2010. "Comment on: A Note on the Discontinuity Problem in Heston's Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 373-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:20:y:2014:i:2:p:101-120:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.