IDEAS home Printed from https://ideas.repec.org/b/uts/finphd/3-2007.html
   My bibliography  Save this book

Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model

Author

Listed:
  • Samson Assefa

Abstract

In this thesis we show how the multi-factor quadratic Gaussian model can be used to price default free and defaultable securities. The mathematical tools used include the theory of stochastic processes, the theory of matrix Riccati equations, the change of measure technique, Ito's formula, use of Fourier Transforms in swaption valuation and approximation methods based on replacing the values of some stochastic processes by their time zero values. The first chapter of the thesis deals with the derivation of efficient closed form formulas for the price of zero coupon bonds in the multi-factor quadratic Gaussian model and the calibration of the multi-factor quadratic Gaussian model to the domestic and foreign forward rate term structures through closed form formulas. In the second chapter of the thesis, we derive approximations for the price of default free swaptions which are based on log-quadratic Gaussian processes. Using numerical experiments, we show the limitations of these approximations. We also give some numerical results for the pricing of a default free swaption using momentbased density approximants of the probability density function of the swaption's payoff. The third chapter of the thesis deals with the calibration of a quadratic Gaussian reduced form model of credit risk to the default free forward rate curve and to the survival probability of an obligor. We also consider different approximations for the price of credit default swaptions. Using numerical experiments, we show the limitations of the approximations. The final chapter of this thesis considers a two country reduced form model of credit risk. We examine the relationship between the domestic forward credit spread and the foreign forward credit spread of an obligor and provide quanto adjustment formulas for the probability of survival of an obligor. In the final part of this chapter, we show that the valuation of a quanto default swap is tractable in a contagion type reduced form model of credit risk which assumes that underlying processes are modelled by quadratic Gaussian processes.

Suggested Citation

  • Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
  • Handle: RePEc:uts:finphd:3-2007
    as

    Download full text from publisher

    File URL: https://opus.lib.uts.edu.au/bitstream/10453/48305/2/02Whole.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 271-295, June.
    3. Erik Schlögl, 2002. "A multicurrency extension of the lognormal interest rate Market Models," Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Rudiger Frey & Daniel Sommer, 1996. "A systematic approach to pricing and hedging international derivatives with interest rate risk: analysis of international derivatives under stochastic interest rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 295-317.
    6. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    7. Shaked, Moshe & George Shanthikumar, J., 1987. "The multivariate hazard construction," Stochastic Processes and their Applications, Elsevier, vol. 24(2), pages 241-258, May.
    8. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    9. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    10. David F. Schrager & Antoon A. J. Pelsser, 2006. "Pricing Swaptions And Coupon Bond Options In Affine Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 673-694, October.
    11. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    12. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
    13. Antoine Frachot, 1995. "Factor Models Of Domestic And Foreign Interest Rates With Stochastic Volatilities," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 167-185, April.
    14. Farshid Jamshidian, 2004. "Valuation of credit default swaps and swaptions," Finance and Stochastics, Springer, vol. 8(3), pages 343-371, August.
    15. Erik Schlogl & Lutz Schlogl, 2000. "A square root interest rate model fitting discrete initial term structure data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(3), pages 183-209.
    16. Kaushik I. Amin & Robert A. Jarrow, 2008. "Pricing foreign currency options under stochastic interest rates," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 14, pages 307-326, World Scientific Publishing Co. Pte. Ltd..
    17. P. Collin-Dufresne & R. Goldstein & J. Hugonnier, 2004. "A General Formula for Valuing Defaultable Securities," Econometrica, Econometric Society, vol. 72(5), pages 1377-1407, September.
    18. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    19. Li Chen & Damir Filipović & H. Vincent Poor, 2004. "Quadratic Term Structure Models For Risk‐Free And Defaultable Rates," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 515-536, October.
    20. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    21. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    22. Markus Leippold & Liuren Wu, 2003. "Design and Estimation of Quadratic Term Structure Models," Review of Finance, European Finance Association, vol. 7(1), pages 47-73.
    23. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    24. Schönbucher, Philipp J., 2000. "A Libor Market Model with Default Risk," Bonn Econ Discussion Papers 15/2001, University of Bonn, Bonn Graduate School of Economics (BGSE).
    25. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    26. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    27. Tomasz R. Bielecki & Marek Rutkowski, 2001. "Intensity-Based Valuation of Basket Credit Derivatives," World Scientific Book Chapters, in: Jiongmin Yong (ed.), Recent Developments In Mathematical Finance, chapter 2, pages 12-27, World Scientific Publishing Co. Pte. Ltd..
    28. Farshid Jamshidian, 1993. "Option and Futures Evaluation With Deterministic Volatilities1," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 149-159, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 31, July-Dece.
    2. Samson Assefa, 2007. "Calibration and Pricing in a Multi-Factor Quadratic Gaussian Model," Research Paper Series 197, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    8. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    9. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    10. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    11. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    12. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    13. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    14. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    15. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    17. Marco Realdon, 2007. "Extended-Gaussian Term Structure Models and Credit Risk Applications," Discussion Papers 07/27, Department of Economics, University of York.
    18. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    19. repec:wyi:journl:002109 is not listed on IDEAS
    20. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    21. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:finphd:3-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.