IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.12783.html
   My bibliography  Save this paper

Financial Stochastic Models Diffusion: From Risk-Neutral to Real-World Measure

Author

Listed:
  • Mohamed Ben Alaya
  • Ahmed Kebaier
  • Djibril Sarr

Abstract

This research presents a comprehensive framework for transitioning financial diffusion models from the risk-neutral (RN) measure to the real-world (RW) measure, leveraging results from probability theory, specifically Girsanov's theorem. The RN measure, fundamental in derivative pricing, is contrasted with the RW measure, which incorporates risk premiums and better reflects actual market behavior and investor preferences, making it crucial for risk management. We address the challenges of incorporating real-world dynamics into financial models, such as accounting for market premiums, producing realistic term structures of market indicators, and fitting any arbitrarily given market curve. Our framework is designed to be general, applicable to a variety of diffusion models, including those with non-additive noise such as the CIR++ model. Through case studies involving Goldman Sachs' 2024 global credit outlook forecasts and the European Banking Authority (EBA) 2023 stress tests, we validate the robustness, practical relevance and applicability of our methodology. This work contributes to the literature by providing a versatile tool for better risk measures and enhancing the realism of financial models under the RW measure. Our model's versatility extends to stress testing and scenario analysis, providing practitioners with a powerful tool to evaluate various what-if scenarios and make well-informed decisions, particularly in pricing and risk management strategies.

Suggested Citation

  • Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Financial Stochastic Models Diffusion: From Risk-Neutral to Real-World Measure," Papers 2409.12783, arXiv.org.
  • Handle: RePEc:arx:papers:2409.12783
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.12783
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    2. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen, 2010. "Real-world jump-diffusion term structure models," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 23-37.
    3. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity," Papers 2409.09179, arXiv.org.
    4. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    5. Sara Dutra Lopes & Carlos Vázquez, 2018. "Real-World Scenarios With Negative Interest Rates Based on the LIBOR Market Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(5-6), pages 466-482, November.
    6. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    7. Mouna Ben Derouich & Ahmed Kebaier, 2022. "Interpolated Drift Implicit Euler MLMC Method for Barrier Option Pricing and application to CIR and CEV Models," Papers 2210.00779, arXiv.org, revised Sep 2024.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Aurélien Alfonsi, 2015. "Affine Diffusions and Related Processes: Simulation, Theory and Applications," Post-Print hal-03127212, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    2. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Sorwar, Ghulam & Barone-Adesi, Giovanni & Allegretto, Walter, 2007. "Valuation of derivatives based on single-factor interest rate models," Global Finance Journal, Elsevier, vol. 18(2), pages 251-269.
    5. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    6. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Peter Hördahl & David Vestin, 2005. "Interpreting Implied Risk-Neutral Densities: The Role of Risk Premia," Review of Finance, European Finance Association, vol. 9(1), pages 97-137.
    9. repec:uts:finphd:40 is not listed on IDEAS
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    13. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    14. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    15. Kimmel, Robert L., 2007. "Complex Times: Asset Pricing and Conditional Moments under Non-affine Diffusions," Working Paper Series 2007-6, Ohio State University, Charles A. Dice Center for Research in Financial Economics.
    16. Michael J. Tomas & Jun Yu, 2021. "An Asymptotic Solution for Call Options on Zero-Coupon Bonds," Mathematics, MDPI, vol. 9(16), pages 1-23, August.
    17. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.
    18. Deuskar, Prachi & Gupta, Anurag & Subrahmanyam, Marti G., 2011. "Liquidity effect in OTC options markets: Premium or discount?," Journal of Financial Markets, Elsevier, vol. 14(1), pages 127-160, February.
    19. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    20. repec:wyi:journl:002109 is not listed on IDEAS
    21. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    22. Martin Vojtek, 2004. "Calibration of Interest Rate Models - Transition Market Case," CERGE-EI Working Papers wp237, The Center for Economic Research and Graduate Education - Economics Institute, Prague.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.12783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.