IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v223y2021i1p161-189.html
   My bibliography  Save this article

Shrinkage for categorical regressors

Author

Listed:
  • Heiler, Phillip
  • Mareckova, Jana

Abstract

This paper introduces a flexible regularization approach that reduces point estimation risk of group means stemming from e.g. categorical regressors, (quasi-)experimental data or panel data models. The loss function is penalized by adding weighted squared ℓ2-norm differences between group location parameters and informative first stage estimates. Under quadratic loss, the penalized estimation problem has a simple interpretable closed-form solution that nests methods established in the literature on ridge regression, discretized support smoothing kernels and model averaging methods. We derive risk-optimal penalty parameters and propose a plug-in approach for estimation. The large sample properties are analyzed in an asymptotic local to zero framework by introducing a class of sequences for close and distant systems of locations that is sufficient for describing a large range of data generating processes. We provide the asymptotic distributions of the shrinkage estimators under different penalization schemes. The proposed plug-in estimator uniformly dominates the ordinary least squares estimator in terms of asymptotic risk if the number of groups is larger than three. Monte Carlo simulations reveal robust improvements over standard methods in finite samples. Real data examples of estimating time trends in a panel and a difference-in-differences study illustrate potential applications.

Suggested Citation

  • Heiler, Phillip & Mareckova, Jana, 2021. "Shrinkage for categorical regressors," Journal of Econometrics, Elsevier, vol. 223(1), pages 161-189.
  • Handle: RePEc:eee:econom:v:223:y:2021:i:1:p:161-189
    DOI: 10.1016/j.jeconom.2020.07.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620303407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.07.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gneezy, Uri & Rustichini, Aldo, 2000. "A Fine is a Price," The Journal of Legal Studies, University of Chicago Press, vol. 29(1), pages 1-17, January.
    2. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    3. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    4. Uri Gneezy & Stephan Meier & Pedro Rey-Biel, 2011. "When and Why Incentives (Don't) Work to Modify Behavior," Journal of Economic Perspectives, American Economic Association, vol. 25(4), pages 191-210, Fall.
    5. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    6. Gerhard Tutz & Margret-Ruth Oelker, 2017. "Modelling Clustered Heterogeneity: Fixed Effects, Random Effects and Mixtures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 204-227, August.
    7. Hansen, Bruce E., 2016. "Efficient shrinkage in parametric models," Journal of Econometrics, Elsevier, vol. 190(1), pages 115-132.
    8. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    9. Bruce E. Hansen, 2014. "Model averaging, asymptotic risk, and regressor groups," Quantitative Economics, Econometric Society, vol. 5(3), pages 495-530, November.
    10. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    11. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    12. Peter Hall & Jeff Racine & Qi Li, 2004. "Cross-Validation and the Estimation of Conditional Probability Densities," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1015-1026, December.
    13. Raftery A.E. & Zheng Y., 2003. "Discussion: Performance of Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 931-938, January.
    14. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2019. "On uniform asymptotic risk of averaging GMM estimators," Quantitative Economics, Econometric Society, vol. 10(3), pages 931-979, July.
    15. Ouyang, Desheng & Li, Qi & Racine, Jeffrey S., 2009. "Nonparametric Estimation Of Regression Functions With Discrete Regressors," Econometric Theory, Cambridge University Press, vol. 25(1), pages 1-42, February.
    16. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, September.
    17. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    18. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    19. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mammen, Enno & Wilke, Ralf A. & Zapp, Kristina Maria, 2022. "Estimation of group structures in panel models with individual fixed effects," ZEW Discussion Papers 22-023, ZEW - Leibniz Centre for European Economic Research.
    2. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    3. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    2. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    3. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    4. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    5. Zhang, Xinyu, 2015. "Consistency of model averaging estimators," Economics Letters, Elsevier, vol. 130(C), pages 120-123.
    6. Qingfeng Liu & Ryo Okui & Arihiro Yoshimura, 2016. "Generalized Least Squares Model Averaging," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1692-1752, December.
    7. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    8. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    9. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    11. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    12. Aman Ullah & Xinyu Zhang, 2015. "Grouped Model Averaging for Finite Sample Size," Working Papers 201501, University of California at Riverside, Department of Economics.
    13. Shaobo Jin & Sebastian Ankargren, 2019. "Frequentist Model Averaging in Structural Equation Modelling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 84-104, March.
    14. Giuseppe De Luca & Jan Magnus & Franco Peracchi, 2022. "Asymptotic properties of the weighted average least squares (WALS) estimator," Tinbergen Institute Discussion Papers 22-022/III, Tinbergen Institute.
    15. Ryan Greenaway-McGrevy & Kade Sorensen, 2021. "A spatial model averaging approach to measuring house prices," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-32, December.
    16. Giuseppe Luca & Jan R. Magnus & Franco Peracchi, 2023. "Weighted-Average Least Squares (WALS): Confidence and Prediction Intervals," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1637-1664, April.
    17. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    18. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    19. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    20. Wenchao Xu & Xinyu Zhang, 2024. "On Asymptotic Optimality of Least Squares Model Averaging When True Model Is Included," Papers 2411.09258, arXiv.org.

    More about this item

    Keywords

    Categorical regressors; Regularization; Smoothing kernels; Model averaging;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:223:y:2021:i:1:p:161-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.