From Deep Filtering to Deep Econometrics
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Carol Alexander, "undated". "Principal Component Analysis of Volatility Smiles and Skews," ICMA Centre Discussion Papers in Finance icma-dp2000-10, Henley Business School, University of Reading, revised Jun 2000.
- Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
- Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023.
"A Machine Learning Approach to Volatility Forecasting,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
- Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
- Malik, S. & Pitt, M. K., 2011. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Working papers 318, Banque de France.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
- Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
- Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
- Neil Shephard & Ole E. Barndorff-Nielsen, 1998. "Incorporation of a Leverage Effect in a Stochastic Volatility Model," Economics Series Working Papers 1998-W14, University of Oxford, Department of Economics.
- Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
- Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
- Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davide Raggi & Silvano Bordignon, 2011.
"Volatility, Jumps, and Predictability of Returns: A Sequential Analysis,"
Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
- S. Bordignon & D. Raggi, 2008. "Volatility, Jumps and Predictability of Returns: a Sequential Analysis," Working Papers 636, Dipartimento Scienze Economiche, Universita' di Bologna.
- M. Hakan Eratalay, 2016.
"Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study,"
International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
- Mustafa Hakan Eratalay, 2012. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," EUSP Department of Economics Working Paper Series 2012/04, European University at St. Petersburg, Department of Economics.
- Jiawen Xu & Pierre Perron, 2015.
"Forecasting in the presence of in and out of sample breaks,"
Boston University - Department of Economics - Working Papers Series
wp2015-012, Boston University - Department of Economics.
- Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
- Siem Jan Koopman & Eugenie Hol Uspensky, 2002.
"The stochastic volatility in mean model: empirical evidence from international stock markets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
- Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
- P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
- Stavros Degiannakis & Evdokia Xekalaki, 2007.
"Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models,"
Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
- Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
- Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
- Kaczmarek, Tomasz & Będowska-Sójka, Barbara & Grobelny, Przemysław & Perez, Katarzyna, 2022. "False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network," Research in International Business and Finance, Elsevier, vol. 60(C).
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
- Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
- María García Centeno & Román Mínguez Salido, 2009. "Estimation of Asymmetric Stochastic Volatility Models for Stock-Exchange Index Returns," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(1), pages 71-87, February.
- Isabel Casas & Helena Veiga, 2021.
"Exploring Option Pricing and Hedging via Volatility Asymmetry,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
- Casas, Isabel, 2019. "Exploring option pricing and hedging via volatility asymmetry," DES - Working Papers. Statistics and Econometrics. WS 28234, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020.
"Data cloning estimation for asymmetric stochastic volatility models,"
Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
- Zea Bermudez, Patrícia de, 2019. "Data cloning estimation for asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS 28214, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Zeyu Zheng & Zhi Qiao & Tetsuya Takaishi & H Eugene Stanley & Baowen Li, 2014. "Realized Volatility and Absolute Return Volatility: A Comparison Indicating Market Risk," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
- Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
- Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-01-08 (Big Data)
- NEP-CMP-2024-01-08 (Computational Economics)
- NEP-ECM-2024-01-08 (Econometrics)
- NEP-ETS-2024-01-08 (Econometric Time Series)
- NEP-RMG-2024-01-08 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.06256. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.