IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2311.06256.html
   My bibliography  Save this paper

From Deep Filtering to Deep Econometrics

Author

Listed:
  • Robert Stok
  • Paul Bilokon

Abstract

Calculating true volatility is an essential task for option pricing and risk management. However, it is made difficult by market microstructure noise. Particle filtering has been proposed to solve this problem as it favorable statistical properties, but relies on assumptions about underlying market dynamics. Machine learning methods have also been proposed but lack interpretability, and often lag in performance. In this paper we implement the SV-PF-RNN: a hybrid neural network and particle filter architecture. Our SV-PF-RNN is designed specifically with stochastic volatility estimation in mind. We then show that it can improve on the performance of a basic particle filter.

Suggested Citation

  • Robert Stok & Paul Bilokon, 2023. "From Deep Filtering to Deep Econometrics," Papers 2311.06256, arXiv.org.
  • Handle: RePEc:arx:papers:2311.06256
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2311.06256
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carol Alexander, "undated". "Principal Component Analysis of Volatility Smiles and Skews," ICMA Centre Discussion Papers in Finance icma-dp2000-10, Henley Business School, University of Reading, revised Jun 2000.
    2. Dinghai Xu & Yuying Li, 2010. "Empirical Evidence of the Leverage Effect in a Stochastic Volatility Model: A Realized Volatility Approach," Working Papers 1002, University of Waterloo, Department of Economics, revised May 2010.
    3. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    4. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
    5. Malik, S. & Pitt, M. K., 2011. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Working papers 318, Banque de France.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    8. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    9. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    10. Neil Shephard & Ole E. Barndorff-Nielsen, 1998. "Incorporation of a Leverage Effect in a Stochastic Volatility Model," Economics Series Working Papers 1998-W14, University of Oxford, Department of Economics.
    11. Malik, Sheheryar & Pitt, Michael K., 2009. "Modelling Stochastic Volatility with Leverage and Jumps: A Simulated Maximum Likelihood Approach via Particle Filtering," Economic Research Papers 271302, University of Warwick - Department of Economics.
    12. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
    13. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    2. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    3. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    4. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    5. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    6. León Beleña & Ernesto Curbelo & Luca Martino & Valero Laparra, 2024. "Second-Moment/Order Approximations by Kernel Smoothers with Application to Volatility Estimation," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    7. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    8. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    9. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    10. Eugenie Hol & Siem Jan Koopman, 2000. "Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility," Tinbergen Institute Discussion Papers 00-104/4, Tinbergen Institute.
    11. Kaczmarek, Tomasz & Będowska-Sójka, Barbara & Grobelny, Przemysław & Perez, Katarzyna, 2022. "False Safe Haven Assets: Evidence From the Target Volatility Strategy Based on Recurrent Neural Network," Research in International Business and Finance, Elsevier, vol. 60(C).
    12. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    13. Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
    14. Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
    15. María García Centeno & Román Mínguez Salido, 2009. "Estimation of Asymmetric Stochastic Volatility Models for Stock-Exchange Index Returns," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(1), pages 71-87, February.
    16. Isabel Casas & Helena Veiga, 2021. "Exploring Option Pricing and Hedging via Volatility Asymmetry," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1015-1039, April.
    17. P. de Zea Bermudez & J. Miguel Marín & Helena Veiga, 2020. "Data cloning estimation for asymmetric stochastic volatility models," Econometric Reviews, Taylor & Francis Journals, vol. 39(10), pages 1057-1074, November.
    18. Zeyu Zheng & Zhi Qiao & Tetsuya Takaishi & H Eugene Stanley & Baowen Li, 2014. "Realized Volatility and Absolute Return Volatility: A Comparison Indicating Market Risk," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    19. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    20. Andrés García-Medina & Ester Aguayo-Moreno, 2024. "LSTM–GARCH Hybrid Model for the Prediction of Volatility in Cryptocurrency Portfolios," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1511-1542, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2311.06256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.