IDEAS home Printed from https://ideas.repec.org/a/spr/jecfin/v45y2021i1d10.1007_s12197-020-09526-4.html
   My bibliography  Save this article

Time series analysis of Cryptocurrency returns and volatilities

Author

Listed:
  • Rama K. Malladi

    (California State University, Dominguez Hills)

  • Prakash L. Dheeriya

    (California State University, Dominguez Hills)

Abstract

There is a significant interest in the growth and development of cryptocurrencies, the most notable ones being Bitcoin and Ripple. Global trading in these cryptocurrencies has led to highly speculative and “bubble-like” price movements. Since these cryptocurrencies trade like stocks, provide a feasible alternative to gold and appreciate during uncertain times, it can be hypothesized that their prices are partly determined by the global stock indices, gold prices, and fear gauges such as the VIX and the US Economic Policy Uncertainty Index. In this paper, we test this hypothesis by conducting a time series analysis of returns and volatilities of Bitcoin and of Ripple. We use the Autoregressive-moving-average model with exogenous inputs model (ARMAX), Generalized Autoregressive Conditionally Heteroscedastic (GARCH) model, Vector Autoregression (VAR) model, and Granger causality tests to determine linkages between returns and volatilities of Bitcoin and of Ripple. We find that the Bitcoin crash of 2018 could have been explained using these time series methods. We also find that returns of global stock markets and of gold do not have a causal effect on Bitcoin returns, but we do find returns on Ripple have a causal effect on Bitcoin prices.

Suggested Citation

  • Rama K. Malladi & Prakash L. Dheeriya, 2021. "Time series analysis of Cryptocurrency returns and volatilities," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(1), pages 75-94, January.
  • Handle: RePEc:spr:jecfin:v:45:y:2021:i:1:d:10.1007_s12197-020-09526-4
    DOI: 10.1007/s12197-020-09526-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12197-020-09526-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12197-020-09526-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. repec:cup:cbooks:9781107034662 is not listed on IDEAS
    3. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    4. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    5. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    6. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    7. Brooks,Chris, 2014. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781107661455, December.
    8. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    9. Baillie, Richard T., 1980. "Predictions from ARMAX models," Journal of Econometrics, Elsevier, vol. 12(3), pages 365-374, April.
    10. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    11. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    12. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    13. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    14. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    15. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    16. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    17. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    20. Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
    21. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    22. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    23. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    24. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    25. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    26. Golez, Benjamin & Koudijs, Peter, 2018. "Four centuries of return predictability," Journal of Financial Economics, Elsevier, vol. 127(2), pages 248-263.
    27. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    28. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    2. Kamil Kashif & Robert 'Slepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Papers 2406.18206, arXiv.org.
    3. Yen, Kuang-Chieh & Nie, Wei-Ying & Chang, Hsuan-Ling & Chang, Li-Han, 2023. "Cryptocurrency return dependency and economic policy uncertainty," Finance Research Letters, Elsevier, vol. 56(C).
    4. Peng‐Fei Dai & John W. Goodell & Luu Duc Toan Huynh & Zhifeng Liu & Shaen Corbet, 2023. "Understanding the transmission of crash risk between cryptocurrency and equity markets," The Financial Review, Eastern Finance Association, vol. 58(3), pages 539-573, August.
    5. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    6. Tanya Araújo & Paulo Barbosa, 2024. "Reconstructing Cryptocurrency Processes via Markov Chains," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2509-2521, October.
    7. Mustafa Tevfik Kartal & Mustafa Kevser & Fatih Ayhan, 2023. "Asymmetric effects of global factors on return of cryptocurrencies by novel nonlinear quantile approaches," Economic Change and Restructuring, Springer, vol. 56(3), pages 1515-1535, June.
    8. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    9. Marcel C. Minutolo & Werner Kristjanpoller & Prakash Dheeriya, 2022. "Impact of COVID-19 effective reproductive rate on cryptocurrency," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-27, December.
    10. Chang, Hsuan-Ling & Nie, Wei-Ying & Chang, Li-Han & Cheng, Hung-Wen & Yen, Kuang-Chieh, 2023. "Cryptocurrency Momentum and VIX premium," Finance Research Letters, Elsevier, vol. 57(C).
    11. Bazán-Palomino, Walter & Svogun, Daniel, 2023. "On the drivers of technical analysis profits in cryptocurrency markets: A Distributed Lag approach," International Review of Financial Analysis, Elsevier, vol. 86(C).
    12. Rasoul Amirzadeh & Asef Nazari & Dhananjay Thiruvady & Mong Shan Ee, 2023. "Modelling Determinants of Cryptocurrency Prices: A Bayesian Network Approach," Papers 2303.16148, arXiv.org.
    13. Tanya Ara'ujo & Paulo Barbosa, 2023. "Reconstructing cryptocurrency processes via Markov chains," Papers 2308.07626, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    2. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    7. Zhou, Siwen, 2018. "Exploring the Driving Forces of the Bitcoin Exchange Rate Dynamics: An EGARCH Approach," MPRA Paper 89445, University Library of Munich, Germany.
    8. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    9. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    10. Pavel Ciaian & d'Artis Kancs & Miroslava Rajcaniova, 2018. "The Price of BitCoin: GARCH Evidence from High Frequency Data," EERI Research Paper Series EERI RP 2018/14, Economics and Econometrics Research Institute (EERI), Brussels.
    11. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    12. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
    13. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    14. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    15. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    16. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    17. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    18. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.
    19. Toan Luu Duc Huynh, 2019. "Spillover Risks on Cryptocurrency Markets: A Look from VAR-SVAR Granger Causality and Student’s-t Copulas," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    20. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.

    More about this item

    Keywords

    Asset management; Alternative investments; Digital currency; Cryptocurrency; Bitcoin; ripple; BTC; XRP; economic uncertainty index;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:45:y:2021:i:1:d:10.1007_s12197-020-09526-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.