IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.12863.html
   My bibliography  Save this paper

A remark on moment-dependent phase transitions in high-dimensional Gaussian approximations

Author

Listed:
  • Anders Bredahl Kock
  • David Preinerstorfer

Abstract

In this article, we study the critical growth rates of dimension below which Gaussian critical values can be used for hypothesis testing but beyond which they cannot. We are particularly interested in how these growth rates depend on the number of moments that the observations possess.

Suggested Citation

  • Anders Bredahl Kock & David Preinerstorfer, 2023. "A remark on moment-dependent phase transitions in high-dimensional Gaussian approximations," Papers 2310.12863, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2310.12863
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.12863
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2019. "Improved Central Limit Theorem and bootstrap approximations in high dimensions," Papers 1912.10529, arXiv.org, revised May 2022.
    2. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    2. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    3. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    4. Cheng, Guanghui & Liu, Zhi & Peng, Liuhua, 2022. "Gaussian approximations for high-dimensional non-degenerate U-statistics via exchangeable pairs," Statistics & Probability Letters, Elsevier, vol. 182(C).
    5. Matias D. Cattaneo & Ricardo P. Masini & William G. Underwood, 2022. "Yurinskii's Coupling for Martingales," Papers 2210.00362, arXiv.org, revised Sep 2024.
    6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2022. "High-dimensional Data Bootstrap," Papers 2205.09691, arXiv.org.
    7. Kojevnikov, Denis & Song, Kyungchul, 2022. "A Berry–Esseen bound for vector-valued martingales," Statistics & Probability Letters, Elsevier, vol. 186(C).
    8. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    9. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    11. repec:hum:wpaper:sfb649dp2014-067 is not listed on IDEAS
    12. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Shengchun Kong & Zhuqing Yu & Xianyang Zhang & Guang Cheng, 2021. "High‐dimensional robust inference for Cox regression models using desparsified Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1068-1095, September.
    14. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    15. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    16. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    17. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Yuta Koike, 2023. "High-Dimensional Central Limit Theorems for Homogeneous Sums," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-45, March.
    20. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    21. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    22. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.12863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.