Chance or Chaos? Fractal geometry aimed to inspect the nature of Bitcoin
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Big data analytics using multi-fractal wavelet leaders in high-frequency Bitcoin markets," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017.
"Long Memory and Data Frequency in Financial Markets,"
CESifo Working Paper Series
6396, CESifo.
- Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," Discussion Papers of DIW Berlin 1647, DIW Berlin, German Institute for Economic Research.
- Ruan, Qingsong & Meng, Lu & Lv, Dayong, 2021. "Effect of introducing Bitcoin futures on the underlying Bitcoin market efficiency: A multifractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
- Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
- Liu, Jian & Cheng, Cheng & Yang, Xianglin & Yan, Lizhao & Lai, Yongzeng, 2019. "Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
- Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
- Chaker Aloui & Duc Khuong Nguyen, 2014.
"On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach,"
Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
- Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behavior in Mediterranean stock markets: a wavelet-based approach," Working Papers 2014-184, Department of Research, Ipag Business School.
- A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
- Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.
- Marin-Lopez, A. & Martínez-Cadena, J.A. & Martinez-Martinez, F. & Alvarez-Ramirez, J., 2023. "Surrogate multivariate Hurst exponent analysis of gait dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Kristoufek, Ladislav, 2014.
"Leverage effect in energy futures,"
Energy Economics, Elsevier, vol. 45(C), pages 1-9.
- Ladislav Kristoufek, 2014. "Leverage effect in energy futures," Papers 1403.0064, arXiv.org.
- Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," FinMaP-Working Papers 17, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Alessandro Stringhi & Silvia Figini, 2016. "How to improve accuracy for DFA technique," Papers 1602.00629, arXiv.org.
- Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014.
"Testing the weak-form efficiency of the WTI crude oil futures market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
- Zhi-Qiang Jiang & Wen-Jie Xie & Wei-Xing Zhou, 2012. "Testing the weak-form efficiency of the WTI crude oil futures market," Papers 1211.4686, arXiv.org.
- Kristoufek, Ladislav, 2012.
"How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4252-4260.
- Ladislav Kristoufek, 2012. "How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study," Papers 1201.3511, arXiv.org.
- Kristoufek, Ladislav, 2019.
"Are the crude oil markets really becoming more efficient over time? Some new evidence,"
Energy Economics, Elsevier, vol. 82(C), pages 253-263.
- Ladislav Kristoufek, 2018. "Are the Crude Oil Markets Really Becoming More Efficient over Time? Some New Evidence," Working Papers IES 2018/07, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2018.
- Bassler, Kevin E. & McCauley, Joseph L. & Gunaratne, Gemunu H., 2006. "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets," MPRA Paper 2126, University Library of Munich, Germany.
- Karahan, Cenk C. & Odabaşı, Attila & Tiryaki, C. Sani, 2024. "Wired together: Integration and efficiency in European electricity markets," Energy Economics, Elsevier, vol. 133(C).
- Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
- Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
- Ladislav Kristoufek & Miloslav Vosvrda, 2014.
"Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
- Ladislav Kristoufek & Miloslav Vosvrda, 2013. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," Papers 1307.3060, arXiv.org, revised May 2014.
- Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," FinMaP-Working Papers 18, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-PAY-2023-10-02 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.00390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.