IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v8y2020i2p25-d347854.html
   My bibliography  Save this article

Efficiency of the Brazilian Bitcoin: A DFA Approach

Author

Listed:
  • Derick Quintino

    (Department of Economics, Administration and Sociology, University of São Paulo, Piracicaba 13418-900, Brazil)

  • Jessica Campoli

    (Department of Economics, Administration and Sociology, University of São Paulo, Piracicaba 13418-900, Brazil)

  • Heloisa Burnquist

    (Department of Economics, Administration and Sociology, University of São Paulo, Piracicaba 13418-900, Brazil)

  • Paulo Ferreira

    (VALORIZA—Research Center for Endogenous Resource Valorization, 7300 Portalegre, Portugal
    Instituto Politécnico de Portalegre, 7300 Portalegre, Portugal
    CEFAGE-UE, IIFA, Universidade de Évora, Largo dos Colegiais 2, 7000 Évora, Portugal)

Abstract

Bitcoin’s evolution has attracted the attention of investors and researchers looking for a better understanding of the efficiency of cryptocurrency markets, considering their prices and volatility. The purpose of this paper is to contribute to this understanding by studying the degree of persistence of the Bitcoin measured by the Hurst exponent, considering prices from the Brazilian market, and comparing with Bitcoin in USD as a benchmark. We applied Detrended Fluctuation Analysis (DFA), for the period from 9 April 2017 to 30 June 2018, using daily closing prices, with a total of 429 observations. We focused on two prices of Bitcoins resulting from negotiations made by two different Brazilian financial institutions: Foxbit and Mercado. The results indicate that Mercado and Foxbit returns tend to follow Bitcoin dynamics and all of them show persistent behavior, although the persistence in slightly higher for the Brazilian Bitcoin. However, this evidence does not necessarily mean opportunities for abnormal profits, as aspects such as liquidity or transaction costs could be impediments to this occurrence.

Suggested Citation

  • Derick Quintino & Jessica Campoli & Heloisa Burnquist & Paulo Ferreira, 2020. "Efficiency of the Brazilian Bitcoin: A DFA Approach," IJFS, MDPI, vol. 8(2), pages 1-9, April.
  • Handle: RePEc:gam:jijfss:v:8:y:2020:i:2:p:25-:d:347854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/8/2/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/8/2/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    2. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    3. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    4. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    5. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    6. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    7. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    8. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
    9. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    10. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Price delay and market frictions in cryptocurrency markets," Economics Letters, Elsevier, vol. 174(C), pages 39-41.
    11. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    12. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    13. Garnier, Josselin & Solna, Knut, 2019. "Chaos and order in the bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 708-721.
    14. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    15. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    16. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Grech, Dariusz & Mazur, Zygmunt, 2013. "On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2384-2397.
    19. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    20. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    21. Wei, Wang Chun, 2018. "Liquidity and market efficiency in cryptocurrencies," Economics Letters, Elsevier, vol. 168(C), pages 21-24.
    22. Ivanova, K & Ausloos, M, 1999. "Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 349-354.
    23. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    24. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    25. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    26. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    27. Josselin Garnier & Knut Solna, 2018. "Chaos and Order in the Bitcoin Market," Papers 1809.08403, arXiv.org, revised Apr 2019.
    28. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    29. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    30. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    31. Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
    32. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    33. Ausloos, M. & Vandewalle, N. & Boveroux, Ph. & Minguet, A. & Ivanova, K., 1999. "Applications of statistical physics to economic and financial topics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 274(1), pages 229-240.
    34. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    35. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    36. Zhang, Yuanyuan & Chan, Stephen & Chu, Jeffrey & Nadarajah, Saralees, 2019. "Stylised facts for high frequency cryptocurrency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Ferreira, Paulo & Quintino, Derick & Wundervald, Bruna & Dionísio, Andreia & Aslam, Faheem & Cantarinha, Ana, 2021. "Is Brazilian music getting more predictable? A statistical physics approach for different music genres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Cristiana Vaz & Rui Pascoal & Helder Sebastião, 2021. "Price Appreciation and Roughness Duality in Bitcoin: A Multifractal Analysis," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    4. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    5. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    6. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    7. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    8. Tetsuya Takaishi & Takanori Adachi, 2019. "Market efficiency, liquidity, and multifractality of Bitcoin: A dynamic study," Papers 1902.09253, arXiv.org.
    9. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    10. Natália Costa & César Silva & Paulo Ferreira, 2019. "Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies," IJFS, MDPI, vol. 7(3), pages 1-12, September.
    11. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    12. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    13. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    14. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    15. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    16. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    17. Hu, Yang & Valera, Harold Glenn A. & Oxley, Les, 2019. "Market efficiency of the top market-cap cryptocurrencies: Further evidence from a panel framework," Finance Research Letters, Elsevier, vol. 31(C), pages 138-145.
    18. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    19. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    20. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Ko, Hee-Un & Yoon, Seong-Min & Kang, Sang Hoon, 2020. "Why cryptocurrency markets are inefficient: The impact of liquidity and volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:8:y:2020:i:2:p:25-:d:347854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.