IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v109y2018icp118-127.html
   My bibliography  Save this article

Multifractal analysis of the time series of daily means of wind speed in complex regions

Author

Listed:
  • Laib, Mohamed
  • Golay, Jean
  • Telesca, Luciano
  • Kanevski, Mikhail

Abstract

In this paper, we applied the multifractal detrended fluctuation analysis to the daily means of wind speed measured by 119 weather stations distributed over the territory of Switzerland. The analysis was focused on the inner time fluctuations of wind speed, which could be linked with the local conditions of the highly varying topography of Switzerland. Our findings point out to a persistent behaviour of almost all measured wind speed series (indicated by a Hurst exponent larger than 0.5), and to a high multifractality degree indicating a relative dominance of the large fluctuations in the dynamics of wind speed, especially on the Swiss Plateau, which is comprised between the Jura and Alps mountain ranges. The study represents a contribution to the understanding of the dynamical mechanisms of wind speed variability in mountainous regions.

Suggested Citation

  • Laib, Mohamed & Golay, Jean & Telesca, Luciano & Kanevski, Mikhail, 2018. "Multifractal analysis of the time series of daily means of wind speed in complex regions," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 118-127.
  • Handle: RePEc:eee:chsofr:v:109:y:2018:i:c:p:118-127
    DOI: 10.1016/j.chaos.2018.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918300699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    2. Ikeda, Taro, 2018. "Multifractal structures for the Russian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2123-2128.
    3. Telesca, Luciano & Lovallo, Michele & Kanevski, Mikhail, 2016. "Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions," Applied Energy, Elsevier, vol. 162(C), pages 1052-1061.
    4. Nematollahi, Omid & Hoghooghi, Hadi & Rasti, Mehdi & Sedaghat, Ahmad, 2016. "Energy demands and renewable energy resources in the Middle East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1172-1181.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. da Silva, Hérica Santos & Silva, José Rodrigo Santos & Stosic, Tatijana, 2020. "Multifractal analysis of air temperature in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Memon, Bilal Ahmed & Yao, Hongxing & Naveed, Hafiz Muhammad, 2022. "Examining the efficiency and herding behavior of commodity markets using multifractal detrended fluctuation analysis. Empirical evidence from energy, agriculture, and metal markets," Resources Policy, Elsevier, vol. 77(C).
    4. Santos, Fábio Sandro dos & Nascimento, Kerolly Kedma Felix do & Jale, Jader da Silva & Stosic, Tatijana & Marinho, Manoel H.N. & Ferreira, Tiago A.E., 2021. "Mixture distribution and multifractal analysis applied to wind speed in the Brazilian Northeast region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Gu, Danlei & Huang, Jingjing, 2019. "Multifractal detrended fluctuation analysis on high-frequency SZSE in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 225-235.
    6. Guignard, Fabian & Lovallo, Michele & Laib, Mohamed & Golay, Jean & Kanevski, Mikhail & Helbig, Nora & Telesca, Luciano, 2019. "Investigating the time dynamics of wind speed in complex terrains by using the Fisher–Shannon method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 611-621.
    7. Oumou Kalsoum Diallo & Pierre Mendy, 2019. "Wavelet Leader and Multifractal Detrended Fluctuation Analysis of Market Efficiency: Evidence from WAEMU Market Index," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 5(1), pages 1-23, June.
    8. Zhan, Cun & Liang, Chuan & Zhao, Lu & Zhang, Yaling & Cheng, Long & Jiang, Shouzheng & Xing, Liwen, 2021. "Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Darko Stosic & Dusan Stosic & Irena Vodenska & H. Eugene Stanley & Tatijana Stosic, 2021. "A new look at calendar anomalies: Multifractality and day of the week effect," Papers 2106.06164, arXiv.org.
    10. Zhang, Xiaonei & Zeng, Ming & Meng, Qinghao, 2018. "Multivariate multifractal detrended fluctuation analysis of 3D wind field signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 513-523.
    11. İşcanoğlu-Çekiç, Ayşegül & Gülteki̇n, Havva, 2019. "Are cross-correlations between Turkish Stock Exchange and three major country indices multifractal or monofractal?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 978-990.
    12. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. L. Telesca & T. Matcharashvili & T. Chelidze & N. Zhukova & Z. Javakhishvili, 2015. "Investigating the dynamical features of the time distribution of the reservoir-induced seismicity in Enguri area (Georgia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 117-125, May.
    14. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    15. Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
    16. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    17. Echeverria, J.C. & Rodriguez, E. & Aguilar-Cornejo, M. & Alvarez-Ramirez, J., 2016. "Linear combination of power-law functions for detecting multiscaling using detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 283-293.
    18. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    19. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    20. Murguía, J.S. & Rosu, H.C. & Jimenez, A. & Gutiérrez-Medina, B. & García-Meza, J.V., 2015. "The Hurst exponents of Nitzschia sp. diatom trajectories observed by light microscopy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 176-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:109:y:2018:i:c:p:118-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.