IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v165y2018icp58-61.html
   My bibliography  Save this article

Price discovery of cryptocurrencies: Bitcoin and beyond

Author

Listed:
  • Brauneis, Alexander
  • Mestel, Roland

Abstract

Academic research on cryptocurrencies is almost exclusively directed towards Bitcoin. We extend existing literature by performing various tests on efficiency of several cryptocurrencies and additionally link efficiency to measures of liquidity. Cryptocurrencies become less predictable / inefficient as liquidity increases.

Suggested Citation

  • Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
  • Handle: RePEc:eee:ecolet:v:165:y:2018:i:c:p:58-61
    DOI: 10.1016/j.econlet.2018.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176518300417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2018.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    2. Chow, K. Victor & Denning, Karen C., 1993. "A simple multiple variance ratio test," Journal of Econometrics, Elsevier, vol. 58(3), pages 385-401, August.
    3. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    4. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    5. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    6. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    7. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    8. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    9. Shane A. Corwin & Paul Schultz, 2012. "A Simple Way to Estimate Bid‐Ask Spreads from Daily High and Low Prices," Journal of Finance, American Finance Association, vol. 67(2), pages 719-760, April.
    10. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    11. Choi, In, 1999. "Testing the Random Walk Hypothesis for Real Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 293-308, May-June.
    12. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    13. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    14. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    15. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    16. Lewis, Jeffrey B. & Linzer, Drew A., 2005. "Estimating Regression Models in Which the Dependent Variable Is Based on Estimates," Political Analysis, Cambridge University Press, vol. 13(4), pages 345-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    6. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    7. Shimeng Shi & Yukun Shi, 2021. "Bitcoin futures: trade it or ban it?," The European Journal of Finance, Taylor & Francis Journals, vol. 27(4-5), pages 381-396, March.
    8. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    9. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    10. Regis Augusto Ely, 2011. "Returns Predictability and Stock Market Efficiency in Brazil," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(4), pages 571-584.
    11. Shimeng Shi & Jia Zhai & Yingying Wu, 2024. "Informational inefficiency on bitcoin futures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(6), pages 642-667, April.
    12. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    13. Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
    14. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    15. Eross, Andrea & McGroarty, Frank & Urquhart, Andrew & Wolfe, Simon, 2019. "The intraday dynamics of bitcoin," Research in International Business and Finance, Elsevier, vol. 49(C), pages 71-81.
    16. Liu, Weiyi, 2019. "Portfolio diversification across cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 200-205.
    17. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    18. Graham Smith, 2012. "The changing and relative efficiency of European emerging stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 18(8), pages 689-708, September.
    19. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1), pages 27-35.
    20. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.

    More about this item

    Keywords

    Cryptocurrencies; (in-)efficiency; Price discovery; Liquidity;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:165:y:2018:i:c:p:58-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.