IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.14375.html
   My bibliography  Save this paper

Bandwidth Selection for Treatment Choice with Binary Outcomes

Author

Listed:
  • Takuya Ishihara

Abstract

This study considers the treatment choice problem when outcome variables are binary. We focus on statistical treatment rules that plug in fitted values based on nonparametric kernel regression and show that optimizing two parameters enables the calculation of the maximum regret. Using this result, we propose a novel bandwidth selection method based on the minimax regret criterion. Finally, we perform a numerical analysis to compare the optimal bandwidth choices for the binary and normally distributed outcomes.

Suggested Citation

  • Takuya Ishihara, 2023. "Bandwidth Selection for Treatment Choice with Binary Outcomes," Papers 2308.14375, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2308.14375
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.14375
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    2. Takuya Ishihara & Toru Kitagawa, 2021. "Evidence Aggregation for Treatment Choice," Papers 2108.06473, arXiv.org, revised Jul 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daido Kido, 2023. "Locally Asymptotically Minimax Statistical Treatment Rules Under Partial Identification," Papers 2311.08958, arXiv.org.
    2. Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2022. "Optimal Decision Rules when Payoffs are Partially Identified," Papers 2204.11748, arXiv.org, revised May 2023.
    3. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
    4. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Tetenov, Aleksey, 2012. "Statistical treatment choice based on asymmetric minimax regret criteria," Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
    6. Piasenti, Stefano & Valente, Marica & Van Veldhuizen, Roel & Pfeifer, Gregor, 2023. "Does Unfairness Hurt Women? The Effects of Losing Unfair Competitions," Working Papers 2023:7, Lund University, Department of Economics.
    7. Steven F. Lehrer & R. Vincent Pohl & Kyungchul Song, 2016. "Targeting Policies: Multiple Testing and Distributional Treatment Effects," NBER Working Papers 22950, National Bureau of Economic Research, Inc.
    8. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    9. Yan Liu, 2022. "Policy Learning under Endogeneity Using Instrumental Variables," Papers 2206.09883, arXiv.org, revised Mar 2024.
    10. Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
    11. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    12. Bruno Crépon & Gerard J. van den Berg, 2016. "Active Labor Market Policies," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 521-546, October.
    13. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    14. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    15. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    16. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    17. Maximilian Blesch & Philipp Eisenhauer, 2021. "Robust decision-making under risk and ambiguity," Papers 2104.12573, arXiv.org, revised Oct 2021.
    18. Debopam Bhattacharya & Shin Kanaya & Margaret Stevens, 2017. "Are University Admissions Academically Fair?," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 449-464, July.
    19. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    20. Nabil I. Al-Najjar & Luciano Pomatto, 2016. "Choice under aggregate uncertainty," Theory and Decision, Springer, vol. 80(2), pages 187-209, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.14375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.