DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wendi Li & Xiao Yang & Weiqing Liu & Yingce Xia & Jiang Bian, 2022. "DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation," Papers 2201.04038, arXiv.org, revised Jun 2022.
- Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
- Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
- Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
- Liang Zeng & Lei Wang & Hui Niu & Ruchen Zhang & Ling Wang & Jian Li, 2021. "Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling," Papers 2107.11972, arXiv.org, revised Jul 2024.
- Shuo Yu & Hongyan Xue & Xiang Ao & Feiyang Pan & Jia He & Dandan Tu & Qing He, 2023. "Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning," Papers 2306.12964, arXiv.org.
- Yuan Gao & Haokun Chen & Xiang Wang & Zhicai Wang & Xue Wang & Jinyang Gao & Bolin Ding, 2024. "DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation," Papers 2402.06656, arXiv.org.
- Zikai Wei & Bo Dai & Dahua Lin, 2022. "Factor Investing with a Deep Multi-Factor Model," Papers 2210.12462, arXiv.org.
- Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
- Zikai Wei & Bo Dai & Dahua Lin, 2023. "E2EAI: End-to-End Deep Learning Framework for Active Investing," Papers 2305.16364, arXiv.org.
- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
- Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
- Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
- Wentao Zhang & Yilei Zhao & Shuo Sun & Jie Ying & Yonggang Xie & Zitao Song & Xinrun Wang & Bo An, 2023. "Reinforcement Learning with Maskable Stock Representation for Portfolio Management in Customizable Stock Pools," Papers 2311.10801, arXiv.org, revised Feb 2024.
- Lili Wang & Chenghan Huang & Chongyang Gao & Weicheng Ma & Soroush Vosoughi, 2023. "Joint Latent Topic Discovery and Expectation Modeling for Financial Markets," Papers 2307.08649, arXiv.org.
- Jonghun Kwak & Jungyu Ahn & Jinho Lee & Sungwoo Park, 2022. "Shai-am: A Machine Learning Platform for Investment Strategies," Papers 2207.00436, arXiv.org.
- Traianos-Ioannis Theodorou & Alexandros Zamichos & Michalis Skoumperdis & Anna Kougioumtzidou & Kalliopi Tsolaki & Dimitris Papadopoulos & Thanasis Patsios & George Papanikolaou & Athanasios Konstanti, 2021. "An AI-Enabled Stock Prediction Platform Combining News and Social Sensing with Financial Statements," Future Internet, MDPI, vol. 13(6), pages 1-22, May.
- Sheng Xiang & Dawei Cheng & Chencheng Shang & Ying Zhang & Yuqi Liang, 2023. "Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction," Papers 2305.08740, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-07-17 (Big Data)
- NEP-FMK-2023-07-17 (Financial Markets)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.09862. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.