IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.06656.html
   My bibliography  Save this paper

DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation

Author

Listed:
  • Yuan Gao
  • Haokun Chen
  • Xiang Wang
  • Zhicai Wang
  • Xue Wang
  • Jinyang Gao
  • Bolin Ding

Abstract

Machine learning models have demonstrated remarkable efficacy and efficiency in a wide range of stock forecasting tasks. However, the inherent challenges of data scarcity, including low signal-to-noise ratio (SNR) and data homogeneity, pose significant obstacles to accurate forecasting. To address this issue, we propose a novel approach that utilizes artificial intelligence-generated samples (AIGS) to enhance the training procedures. In our work, we introduce the Diffusion Model to generate stock factors with Transformer architecture (DiffsFormer). DiffsFormer is initially trained on a large-scale source domain, incorporating conditional guidance so as to capture global joint distribution. When presented with a specific downstream task, we employ DiffsFormer to augment the training procedure by editing existing samples. This editing step allows us to control the strength of the editing process, determining the extent to which the generated data deviates from the target domain. To evaluate the effectiveness of DiffsFormer augmented training, we conduct experiments on the CSI300 and CSI800 datasets, employing eight commonly used machine learning models. The proposed method achieves relative improvements of 7.2% and 27.8% in annualized return ratio for the respective datasets. Furthermore, we perform extensive experiments to gain insights into the functionality of DiffsFormer and its constituent components, elucidating how they address the challenges of data scarcity and enhance the overall model performance. Our research demonstrates the efficacy of leveraging AIGS and the DiffsFormer architecture to mitigate data scarcity in stock forecasting tasks.

Suggested Citation

  • Yuan Gao & Haokun Chen & Xiang Wang & Zhicai Wang & Xue Wang & Jinyang Gao & Bolin Ding, 2024. "DiffsFormer: A Diffusion Transformer on Stock Factor Augmentation," Papers 2402.06656, arXiv.org.
  • Handle: RePEc:arx:papers:2402.06656
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.06656
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deli Chen & Yanyan Zou & Keiko Harimoto & Ruihan Bao & Xuancheng Ren & Xu Sun, 2019. "Incorporating Fine-grained Events in Stock Movement Prediction," Papers 1910.05078, arXiv.org.
    2. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    3. Jacobs, Heiko & Müller, Sebastian, 2020. "Anomalies across the globe: Once public, no longer existent?," Journal of Financial Economics, Elsevier, vol. 135(1), pages 213-230.
    4. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuohan Wang & Carmine Ventre, 2024. "A Financial Time Series Denoiser Based on Diffusion Model," Papers 2409.02138, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifan Zhao & Shuming Kong & Yanyan Shen, 2023. "DoubleAdapt: A Meta-learning Approach to Incremental Learning for Stock Trend Forecasting," Papers 2306.09862, arXiv.org, revised Apr 2024.
    2. Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
    3. Liang Zeng & Lei Wang & Hui Niu & Ruchen Zhang & Ling Wang & Jian Li, 2021. "Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling," Papers 2107.11972, arXiv.org, revised Jul 2024.
    4. Shuo Sun & Rundong Wang & Bo An, 2022. "Quantitative Stock Investment by Routing Uncertainty-Aware Trading Experts: A Multi-Task Learning Approach," Papers 2207.07578, arXiv.org.
    5. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    6. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    7. Hanauer, Matthias X. & Lesnevski, Pavel & Smajlbegovic, Esad, 2023. "Surprise in short interest," Journal of Financial Markets, Elsevier, vol. 65(C).
    8. Zaremba, Adam & Bianchi, Robert J. & Mikutowski, Mateusz, 2021. "Long-run reversal in commodity returns: Insights from seven centuries of evidence," Journal of Banking & Finance, Elsevier, vol. 133(C).
    9. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    10. Liang Zhao & Wei Li & Ruihan Bao & Keiko Harimoto & YunfangWu & Xu Sun, 2021. "Long-term, Short-term and Sudden Event: Trading Volume Movement Prediction with Graph-based Multi-view Modeling," Papers 2108.11318, arXiv.org.
    11. Andrew Y. Chen & Alejandro Lopez-Lira & Tom Zimmermann, 2022. "Does Peer-Reviewed Research Help Predict Stock Returns?," Papers 2212.10317, arXiv.org, revised Jun 2024.
    12. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    13. Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
    14. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    15. Jansen, Maarten & Swinkels, Laurens & Zhou, Weili, 2021. "Anomalies in the China A-share market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    16. Reis, Julius & Grebe, Leonard & Schiereck, D. & Hennig, Kerstin, 2023. "Is There Still a Day-of-the-Week Effect in the Real Estate Sector?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 141998, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    17. Langlois, Hugues, 2023. "What matters in a characteristic?," Journal of Financial Economics, Elsevier, vol. 149(1), pages 52-72.
    18. Hanauer, Matthias X. & Jansen, Maarten & Swinkels, Laurens & Zhou, Weili, 2024. "Factor models for Chinese A-shares," International Review of Financial Analysis, Elsevier, vol. 91(C).
    19. Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
    20. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.06656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.